AI Assistants Boost Beginners More Than Experts, Study Shows Correlation

There once was an AI named Chat who was really good at repeating back information it already knew. One day, Chat was given to some office workers [1] to help them with their jobs. Some of the workers were experts at their jobs, while others were still learning.  


At first, Chat helped all the workers get more work done faster - even the experts! But soon, the experts noticed something funny. The workers who were still learning got way MORE help from Chat. The new workers improved a lot using Chat, doing their work faster and better than ever before!   


The experts wondered why Chat didn't help them as much. That's when they realized - that Chat is an expert at repeating back facts but can't come up with brand new ideas. So, for workers who already knew those facts, Chat didn't offer them that much new help. But for newer workers still learning those basics, Chat was able to teach them so much more!


This shows a correlation - as in, two things that relate to each other and change together. The more expert a worker already was, the less helpful Chat was for them. But for newer workers, Chat could help them almost as much as the experts! It's because of their different starting points. Chat has a limit to how expert it can be. So, the closer a worker already was to Chat's expertise, the less new stuff Chat offered them.


The experts and newbies improved at different rates thanks to Chat. Their own expertise compared to Chat's matters for how much more they can learn. That connection in how much they improve is the correlation!


The SDTEST® gives clues to someone's motivational values. However, additional polls can provide more pieces of the puzzle.


Imagine also giving an "A.I. and the end of civilization" poll. It asks people to rate at the agree or disagree level. 


Now imagine 100 people who took both tests. You could match up each person's SDTEST® colors with their rated answers about the danger of AI.


Comparing tests gives an expanded picture of values in action. More puzzle pieces make the whole image more apparent!


Multiple tests can work together, like colors blending on a palette. Other polls reveal what engages your values, like what is the perception of the danger of AI. Combined, they paint a richer picture of what motivates our thoughts and deeds.


Below you can read an abridged version of the results of our VUCA poll “A.I. and the end of civilization“. The full results of the poll are available for free in the FAQ section after login or registration.


Eòlas fuadain agus deireadh sìobhaltachd

dùthaich
Cànain
-
Mail
Ath-chuairteachadh
Critical luach na co-dhàimh coefficient
Sgaoileadh àbhaisteach, le Uilleam Sealy Howet (Oileanach) r = 0.0874
Sgaoileadh àbhaisteach, le Uilleam Sealy Howet (Oileanach) r = 0.0874
Sgaoileadh neo-àbhaisteach, le spearman r = 0.0039
SgaoileadhNeo-àbhaisteachÀbhaisteachÀbhaisteachÀbhaisteachÀbhaisteachÀbhaisteachÀbhaisteachÀbhaisteach
A h-uile ceist
A h-uile ceist
1) Sàbhailteachd (dè an ìre a tha thu ag aontachadh no ag eas-aontachadh?)
2) Smachd (dè an ìre a tha thu ag aontachadh no ag eas-aontachadh?)
1) Sàbhailteachd (dè an ìre a tha thu ag aontachadh no ag eas-aontachadh?)
Answer 1-
Lag deimhinneach
0.0647
Lag àicheil
-0.0402
Lag deimhinneach
0.1238
Lag àicheil
-0.1305
Lag deimhinneach
0.0097
Lag àicheil
-0.0535
Lag deimhinneach
0.0344
Answer 2-
Lag deimhinneach
0.0497
Lag deimhinneach
0.0373
Lag deimhinneach
0.0295
Lag àicheil
-0.0054
Lag àicheil
-0.0046
Lag àicheil
-0.0176
Lag àicheil
-0.0596
Answer 3-
Lag àicheil
-0.0307
Lag àicheil
-0.0330
Lag deimhinneach
0.0063
Lag deimhinneach
0.0822
Lag àicheil
-0.0127
Lag àicheil
-0.0159
Lag àicheil
-0.0149
Answer 4-
Lag àicheil
-0.0069
Lag deimhinneach
0.0432
Lag deimhinneach
0.0293
Lag àicheil
-0.0238
Lag àicheil
-0.0470
Lag àicheil
-0.0193
Lag deimhinneach
0.0315
Answer 5-
Lag deimhinneach
0.0069
Lag àicheil
-0.0237
Lag àicheil
-0.0152
Lag deimhinneach
0.0131
Lag àicheil
-0.0018
Lag deimhinneach
0.0608
Lag àicheil
-0.0308
Answer 5-
Lag àicheil
-0.0388
Lag àicheil
-0.0576
Lag àicheil
-0.1067
Lag deimhinneach
0.0816
Lag deimhinneach
0.0191
Lag deimhinneach
0.0491
Lag deimhinneach
0.0162
Answer 6-
Lag àicheil
-0.0360
Lag deimhinneach
0.0619
Lag àicheil
-0.0510
Lag àicheil
-0.0486
Lag deimhinneach
0.0403
Lag deimhinneach
0.0061
Lag deimhinneach
0.0322
2) Smachd (dè an ìre a tha thu ag aontachadh no ag eas-aontachadh?)
Answer 7-
Lag deimhinneach
0.0254
Lag deimhinneach
0.0424
Lag deimhinneach
0.1084
Lag deimhinneach
0.0601
Lag àicheil
-0.0356
Lag àicheil
-0.1149
Lag àicheil
-0.0695
Answer 8-
Lag deimhinneach
0.0118
Lag àicheil
-0.0446
Lag àicheil
-0.0559
Lag deimhinneach
0.0325
Lag deimhinneach
0.0961
Lag àicheil
-0.0228
Lag àicheil
-0.0252
Answer 9-
Lag deimhinneach
0.0535
Lag àicheil
-0.0376
Lag àicheil
-0.0089
Lag àicheil
-0.0281
Lag àicheil
-0.0308
Lag deimhinneach
0.0262
Lag deimhinneach
0.0309
Answer 10-
Lag deimhinneach
0.0157
Lag deimhinneach
0.0103
Lag àicheil
-0.0089
Lag àicheil
-0.0482
Lag deimhinneach
0.0039
Lag deimhinneach
0.0010
Lag deimhinneach
0.0318
Answer 11-
Lag àicheil
-0.0377
Lag deimhinneach
0.0444
Lag deimhinneach
0.0304
Lag deimhinneach
0.0435
Lag àicheil
-0.0755
Lag deimhinneach
0.0475
Lag àicheil
-0.0432
Answer 11-
Lag àicheil
-0.1232
Lag àicheil
-0.0353
Lag àicheil
-0.0230
Lag deimhinneach
0.0330
Lag àicheil
-0.0105
Lag deimhinneach
0.0883
Lag deimhinneach
0.0191
Answer 12-
Lag deimhinneach
0.0124
Lag deimhinneach
0.0425
Lag àicheil
-0.0572
Lag àicheil
-0.1125
Lag deimhinneach
0.0256
Lag deimhinneach
0.0326
Lag deimhinneach
0.0763


Export gu MS Excel
Bidh an gnìomh seo ri fhaighinn anns na cunntasan-bheachd VUCA agad fhèin
Ceart gu leòr



[1] https://www.ft.com/content/b2928076-5c52-43e9-8872-08fda2aa2fcf


2023.11.27
Valerii Kosenko
Pròiseact Pet WAS SAS SASTSTS®

Bha Valerii airidh air eòlaiche-inntinn oideachaidh oideachaidh sòisealta ann an 1993 agus tha e air an eòlas aige a chuir an gnìomh ann an riaghladh pròiseict.
Fhuair Valerii ceum Maighstir agus Teisteanas Pròiseact agus Manaidsear a 'Phrògraim ann an 2013. Aig a' phrògram a mhaighstir, thàinig e gu bhith eòlach air Mapa Rathaid Für Für Für Für. V.) agus daineamaigs snìomhach.
Ghabh Valerii diofar dhiofar dheuchainnean dinnamics snìomhach agus chleachd e an t-eòlas agus an t-eòlas aige gus an dreach làithreach de SDSTST atharrachadh.
Valerii an ùghdar air a bhith a 'sgrùdadh mì-chinnt an V.U.C.A. bun-bheachd a 'cleachdadh staitistig daineamaigs shnìomhanach agus matamataigeach ann an eòlas-inntinn, còrr air 20 cunntas-sluaigh eadar-nàiseanta.
Tha an dreuchd seo air 0 Beachdan
Freagairt gu
Cuir dheth freagairt
Fàg do bheachd
×
A 'FAIGHINN mearachd
MHOLADH DO ceart TIONNDADH
Cuir a-steach post-d mar a thathar a 'miannachadh
Send
Sguir dheth
Bot
sdtest
1
Haigh! Leig dhomh faighneachd dhut, a bheil thu eòlach mu thràth air daineamaigs snìomhach?