AI Assistants Boost Beginners More Than Experts, Study Shows Correlation

There once was an AI named Chat who was really good at repeating back information it already knew. One day, Chat was given to some office workers [1] to help them with their jobs. Some of the workers were experts at their jobs, while others were still learning.  


At first, Chat helped all the workers get more work done faster - even the experts! But soon, the experts noticed something funny. The workers who were still learning got way MORE help from Chat. The new workers improved a lot using Chat, doing their work faster and better than ever before!   


The experts wondered why Chat didn't help them as much. That's when they realized - that Chat is an expert at repeating back facts but can't come up with brand new ideas. So, for workers who already knew those facts, Chat didn't offer them that much new help. But for newer workers still learning those basics, Chat was able to teach them so much more!


This shows a correlation - as in, two things that relate to each other and change together. The more expert a worker already was, the less helpful Chat was for them. But for newer workers, Chat could help them almost as much as the experts! It's because of their different starting points. Chat has a limit to how expert it can be. So, the closer a worker already was to Chat's expertise, the less new stuff Chat offered them.


The experts and newbies improved at different rates thanks to Chat. Their own expertise compared to Chat's matters for how much more they can learn. That connection in how much they improve is the correlation!


The SDTEST® gives clues to someone's motivational values. However, additional polls can provide more pieces of the puzzle.


Imagine also giving an "A.I. and the end of civilization" poll. It asks people to rate at the agree or disagree level. 


Now imagine 100 people who took both tests. You could match up each person's SDTEST® colors with their rated answers about the danger of AI.


Comparing tests gives an expanded picture of values in action. More puzzle pieces make the whole image more apparent!


Multiple tests can work together, like colors blending on a palette. Other polls reveal what engages your values, like what is the perception of the danger of AI. Combined, they paint a richer picture of what motivates our thoughts and deeds.


Below you can read an abridged version of the results of our VUCA poll “A.I. and the end of civilization“. The full results of the poll are available for free in the FAQ section after login or registration.


Faisnéis shaorga agus deireadh na sibhialtachta

Tír
Teanga
-
Mail
Athchúrsáil
Luach criticiúil an chomhéifeacht comhghaoil
Dáileadh Gnáth, le William Sealy Gosset (Mac Léinn) r = 0.0874
Dáileadh Gnáth, le William Sealy Gosset (Mac Léinn) r = 0.0874
Dáileadh Neamh -Ghnáth, le Spearman r = 0.0039
ImdháileadhNeamhghnáchGnáth-Gnáth-Gnáth-Gnáth-Gnáth-Gnáth-Gnáth-
Gach ceist
Gach ceist
1) Sábháilteacht (cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
2) Rialú (Cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
1) Sábháilteacht (cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
Answer 1-
Dearfach lag
0.0647
Diúltach lag
-0.0402
Dearfach lag
0.1238
Diúltach lag
-0.1305
Dearfach lag
0.0097
Diúltach lag
-0.0535
Dearfach lag
0.0344
Answer 2-
Dearfach lag
0.0497
Dearfach lag
0.0373
Dearfach lag
0.0295
Diúltach lag
-0.0054
Diúltach lag
-0.0046
Diúltach lag
-0.0176
Diúltach lag
-0.0596
Answer 2-
Diúltach lag
-0.0307
Diúltach lag
-0.0330
Dearfach lag
0.0063
Dearfach lag
0.0822
Diúltach lag
-0.0127
Diúltach lag
-0.0159
Diúltach lag
-0.0149
Answer 3-
Diúltach lag
-0.0069
Dearfach lag
0.0432
Dearfach lag
0.0293
Diúltach lag
-0.0238
Diúltach lag
-0.0470
Diúltach lag
-0.0193
Dearfach lag
0.0315
Answer 4-
Dearfach lag
0.0069
Diúltach lag
-0.0237
Diúltach lag
-0.0152
Dearfach lag
0.0131
Diúltach lag
-0.0018
Dearfach lag
0.0608
Diúltach lag
-0.0308
Answer 5-
Diúltach lag
-0.0388
Diúltach lag
-0.0576
Diúltach lag
-0.1067
Dearfach lag
0.0816
Dearfach lag
0.0191
Dearfach lag
0.0491
Dearfach lag
0.0162
Answer 6-
Diúltach lag
-0.0360
Dearfach lag
0.0619
Diúltach lag
-0.0510
Diúltach lag
-0.0486
Dearfach lag
0.0403
Dearfach lag
0.0061
Dearfach lag
0.0322
2) Rialú (Cé mhéid a aontaíonn tú nó a n -aontaíonn tú?)
Answer 7-
Dearfach lag
0.0254
Dearfach lag
0.0424
Dearfach lag
0.1084
Dearfach lag
0.0601
Diúltach lag
-0.0356
Diúltach lag
-0.1149
Diúltach lag
-0.0695
Answer 8-
Dearfach lag
0.0118
Diúltach lag
-0.0446
Diúltach lag
-0.0559
Dearfach lag
0.0325
Dearfach lag
0.0961
Diúltach lag
-0.0228
Diúltach lag
-0.0252
Answer 8-
Dearfach lag
0.0535
Diúltach lag
-0.0376
Diúltach lag
-0.0089
Diúltach lag
-0.0281
Diúltach lag
-0.0308
Dearfach lag
0.0262
Dearfach lag
0.0309
Answer 9-
Dearfach lag
0.0157
Dearfach lag
0.0103
Diúltach lag
-0.0089
Diúltach lag
-0.0482
Dearfach lag
0.0039
Dearfach lag
0.0010
Dearfach lag
0.0318
Answer 10-
Diúltach lag
-0.0377
Dearfach lag
0.0444
Dearfach lag
0.0304
Dearfach lag
0.0435
Diúltach lag
-0.0755
Dearfach lag
0.0475
Diúltach lag
-0.0432
Answer 11-
Diúltach lag
-0.1232
Diúltach lag
-0.0353
Diúltach lag
-0.0230
Dearfach lag
0.0330
Diúltach lag
-0.0105
Dearfach lag
0.0883
Dearfach lag
0.0191
Answer 12-
Dearfach lag
0.0124
Dearfach lag
0.0425
Diúltach lag
-0.0572
Diúltach lag
-0.1125
Dearfach lag
0.0256
Dearfach lag
0.0326
Dearfach lag
0.0763


Easpórtáil go MS Excel
Beidh an fheidhmiúlacht seo ar fáil i do vótaíochtaí VUCA féin
Go maith



[1] https://www.ft.com/content/b2928076-5c52-43e9-8872-08fda2aa2fcf


2023.11.27
Valerii Kosenko
Úinéir an Táirge SaaS Pet Project Sdtest®

Bhí Valerii cáilithe mar shíceolaí oideolaíoch sóisialta i 1993 agus ó shin i leith chuir sé a chuid eolais i bhfeidhm i mbainistíocht tionscadail.
Fuair ​​Valerii céim mháistreachta agus cáilíocht an tionscadail agus an bhainisteora cláir in 2013. Le linn a chláir mháistir, bhí sé eolach ar threochlár Project (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) agus dinimic Spiral.
Ghlac Valerii tástálacha éagsúla dinimic bíseach agus d'úsáid sé a chuid eolais agus taithí chun an leagan reatha de SDTest a oiriúnú.
Is é Valerii údar iniúchadh a dhéanamh ar neamhchinnteacht an V.U.C.A. Coincheap ag baint úsáide as dinimic bíseach agus staitisticí matamaiticiúla i síceolaíocht, níos mó ná 20 vótaíocht idirnáisiúnta.
Tá an post seo 0 Deir
Freagra ar
Cealaigh freagra
Fág do thrácht
×
LEAT AN ERROR
Mholadh DO LEAGAN CEART
Cuir isteach do sheoladh r-phoist mar atá ag teastáil
Seol
Cealaigh
Bot
sdtest
1
Dia Duit! Lig dom ceist a chur ort, an bhfuil tú eolach cheana féin ar dhinimic bíseach?