Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Aksies van maatskappye in verhouding tot personeel die afgelope maand (ja / nee)

2) Aksies van maatskappye met betrekking tot personeel in die laaste maand (feit in%)

3) Vrese

4) Grootste probleme wat my land in die gesig staar

5) Watter eienskappe en vermoëns gebruik goeie leiers as hulle suksesvolle spanne bou?

6) Google. Faktore wat die effektiwiteit van die span beïnvloed

7) Die belangrikste prioriteite van werksoekers

8) Wat maak 'n baas 'n wonderlike leier?

9) Wat maak mense suksesvol by die werk?

10) Is u gereed om minder betaal te ontvang om op afstand te werk?

11) Bestaan ​​ouderdomsisme?

12) Ouderdom in loopbaan

13) Ouderdom in die lewe

14) Oorsake van ouderdomsisme

15) Redes waarom mense opgee (deur Anna Vital)

16) VERTROUE (#WVS)

17) Oxford Happiness Survey

18) Sielkundige welstand

19) Waar sou u volgende mees opwindende geleentheid wees?

20) Wat sal u hierdie week doen om na u geestesgesondheid om te sien?

21) Ek leef nadink oor my verlede, hede of toekoms

22) Meritokrasie

23) Kunsmatige intelligensie en die einde van die beskawing

24) Waarom stel mense uit?

25) Geslagsverskil in die bou van selfvertroue (IFD Allensbach)

26) Xing.com -kultuurassessering

27) Patrick Lencioni se "The Five Disfunctions of a Team"

28) Empatie is ...

29) Wat is noodsaaklik vir IT -spesialiste om 'n werkaanbod te kies?

30) Waarom mense weerstand bied teen verandering (deur Siobhán McHale)

31) Hoe reguleer u u emosies? (deur Nawal Mustafa M.A.)

32) 21 Vaardighede wat u vir ewig betaal (deur Jeremiah Teo / 赵汉昇)

33) Regte vryheid is ...

34) 12 maniere om vertroue met ander op te bou (deur Justin Wright)

35) Eienskappe van 'n talentvolle werknemer (deur Talent Management Institute)

36) 10 sleutels om u span te motiveer


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Vrese

Land
Taal
-
Mail
Herbereken
Kritieke waarde van die korrelasiekoëffisiënt
Normale verspreiding, deur William Sealy Gosset (student) r = 0.0353
Normale verspreiding, deur William Sealy Gosset (student) r = 0.0353
Nie normale verspreiding, deur Spearman r = 0.0014
VerspreidingNie
normaal nie
NormaalNie
normaal nie
NormaalNormaalNormaalNormaalNormaal
Alle vrae
Alle vrae
My grootste vrees is
My grootste vrees is
Answer 1-
Swak positief
0.0297
Swak positief
0.0298
Swak negatief
-0.0106
Swak positief
0.0970
Swak positief
0.0325
Swak negatief
-0.0019
Swak negatief
-0.1558
Answer 2-
Swak positief
0.0188
Swak positief
0.0076
Swak negatief
-0.0360
Swak positief
0.0711
Swak positief
0.0387
Swak positief
0.0082
Swak negatief
-0.1011
Answer 3-
Swak positief
0.0026
Swak negatief
-0.0170
Swak negatief
-0.0443
Swak negatief
-0.0458
Swak positief
0.0547
Swak positief
0.0808
Swak negatief
-0.0270
Answer 4-
Swak positief
0.0332
Swak positief
0.0285
Swak negatief
-0.0006
Swak positief
0.0155
Swak positief
0.0276
Swak positief
0.0105
Swak negatief
-0.0917
Answer 5-
Swak positief
0.0122
Swak positief
0.1193
Swak positief
0.0095
Swak positief
0.0721
Swak positief
0.0057
Swak negatief
-0.0083
Swak negatief
-0.1687
Answer 6-
Swak positief
0.0044
Swak positief
0.0005
Swak negatief
-0.0582
Swak negatief
-0.0004
Swak positief
0.0210
Swak positief
0.0830
Swak negatief
-0.0418
Answer 7-
Swak positief
0.0242
Swak positief
0.0368
Swak negatief
-0.0521
Swak negatief
-0.0234
Swak positief
0.0403
Swak positief
0.0568
Swak negatief
-0.0597
Answer 8-
Swak positief
0.0707
Swak positief
0.0781
Swak negatief
-0.0244
Swak positief
0.0140
Swak positief
0.0303
Swak positief
0.0137
Swak negatief
-0.1334
Answer 9-
Swak positief
0.0564
Swak positief
0.1531
Swak positief
0.0127
Swak positief
0.0769
Swak negatief
-0.0136
Swak negatief
-0.0495
Swak negatief
-0.1752
Answer 10-
Swak positief
0.0711
Swak positief
0.0700
Swak negatief
-0.0127
Swak positief
0.0246
Swak positief
0.0363
Swak negatief
-0.0156
Swak negatief
-0.1273
Answer 11-
Swak positief
0.0542
Swak positief
0.0488
Swak positief
0.0086
Swak positief
0.0078
Swak positief
0.0162
Swak positief
0.0315
Swak negatief
-0.1248
Answer 12-
Swak positief
0.0281
Swak positief
0.0929
Swak negatief
-0.0325
Swak positief
0.0361
Swak positief
0.0276
Swak positief
0.0365
Swak negatief
-0.1482
Answer 13-
Swak positief
0.0643
Swak positief
0.0916
Swak negatief
-0.0418
Swak positief
0.0237
Swak positief
0.0425
Swak positief
0.0239
Swak negatief
-0.1558
Answer 14-
Swak positief
0.0697
Swak positief
0.1017
Swak positief
0.0149
Swak negatief
-0.0062
Swak negatief
-0.0087
Swak negatief
-0.0002
Swak negatief
-0.1161
Answer 15-
Swak positief
0.0603
Swak positief
0.1299
Swak negatief
-0.0379
Swak positief
0.0163
Swak negatief
-0.0091
Swak positief
0.0164
Swak negatief
-0.1204
Answer 16-
Swak positief
0.0691
Swak positief
0.0221
Swak negatief
-0.0305
Swak negatief
-0.0515
Swak positief
0.0750
Swak positief
0.0187
Swak negatief
-0.0696


Uitvoer na MS Excel
Hierdie funksionaliteit sal beskikbaar wees in u eie VUCA-stembusse
Ok

You can not only just create your poll in the Tarief «V.U.C.A poll ontwerper» (with a unique link and your logo) but also you can earn money by selling its results in the Tarief «Peilingswinkel», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarief «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produk -eienaar SaaS Pet Project SdTest®

Valerii is in 1993 as 'n maatskaplike pedagoge-sielkundige gekwalifiseer en het sedertdien sy kennis in projekbestuur toegepas.
Valerii het in 2013 'n meestersgraad en die kwalifikasie van die projek- en programbestuurder verwerf. Tydens sy meestersprogram het hy vertroud geraak met Project Roadmap (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) en Spiral Dynamics.
Valerii het verskillende spiraaldinamika -toetse afgelê en sy kennis en ervaring gebruik om die huidige weergawe van SDTest aan te pas.
Valerii is die skrywer van die verkenning van die onsekerheid van die V.U.C.A. Konsep met behulp van spiraaldinamika en wiskundige statistieke in sielkunde, meer as 20 internasionale peilings.
Hierdie boodskap het 0 Opmerkings
Antwoord op
Kanselleer 'n antwoord
Laat u kommentaar
×
JY 'n fout
VOORSTEL JOU korrekte weergawe
Tik jou e-pos as jy wil
Stuur
Kanselleer
Bot
sdtest
1
Haai daar! Laat ek u vra, is u al vertroud met spiraaldinamika?