Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Åtgärder från företag i relation till personal under den senaste månaden (ja / nej)

2) Aktiviteter för företag i förhållande till personal under den senaste månaden (fakta i%)

3) Rädsla

4) Största problem som mitt land står inför

5) Vilka egenskaper och förmågor använder bra ledare när de bygger framgångsrika team?

6) Google. Faktorer som påverkar teameffektiviteten

7) De viktigaste prioriteringarna för arbetssökande

8) Vad gör en chef till en stor ledare?

9) Vad gör människor framgångsrika på jobbet?

10) Är du redo att få mindre lön för att arbeta på distans?

11) Finns ageism?

12) Ageism i karriären

13) Ageism i livet

14) Causes of Ageism

15) Anledningar till att människor ger upp (av Anna Vital)

16) FÖRTROENDE (#WVS)

17) Oxford Happiness Survey

18) Psykologiskt välmående

19) Var skulle vara din nästa mest spännande möjlighet?

20) Vad ska du göra den här veckan för att ta hand om din mentala hälsa?

21) Jag lever och tänker på mitt förflutna, nutid eller framtid

22) Meritokrati

23) Konstgjord intelligens och slutet på civilisationen

24) Varför skjuter människor?

25) Könsskillnad i att bygga självförtroende (IFD Allensbach)

26) Xing.com kulturbedömning

27) Patrick Lencionis "The Five Dysfunctions of a Team"

28) Empati är ...

29) Vad är viktigt för IT -specialisterna för att välja ett jobberbjudande?

30) Varför människor motstår förändring (av Siobhán McHale)

31) Hur reglerar du dina känslor? (av Nawal Mustafa M.A.)

32) 21 färdigheter som betalar dig för alltid (av Jeremiah Teo / 赵汉昇)

33) Verklig frihet är ...

34) 12 sätt att bygga förtroende med andra (av Justin Wright)

35) Egenskaper hos en begåvad anställd (av Talent Management Institute)

36) 10 nycklar för att motivera ditt team


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Rädsla

Land
Språk
-
Mail
Beräkna
Kritiska värdet av korrelationskoefficienten
Normal Distribution, av William Sealy Gosset (Student) r = 0.0353
Normal Distribution, av William Sealy Gosset (Student) r = 0.0353
Icke normal distribution, av Spearman r = 0.0014
DistributionIcke
normal
VanligtIcke
normal
VanligtVanligtVanligtVanligtVanligt
Alla frågor
Alla frågor
Min största rädsla är
Min största rädsla är
Answer 1-
Svagt positivt
0.0297
Svagt positivt
0.0298
Svagt negativt
-0.0106
Svagt positivt
0.0970
Svagt positivt
0.0325
Svagt negativt
-0.0019
Svagt negativt
-0.1558
Answer 2-
Svagt positivt
0.0188
Svagt positivt
0.0076
Svagt negativt
-0.0360
Svagt positivt
0.0711
Svagt positivt
0.0387
Svagt positivt
0.0082
Svagt negativt
-0.1011
Answer 3-
Svagt positivt
0.0026
Svagt negativt
-0.0170
Svagt negativt
-0.0443
Svagt negativt
-0.0458
Svagt positivt
0.0547
Svagt positivt
0.0808
Svagt negativt
-0.0270
Answer 4-
Svagt positivt
0.0332
Svagt positivt
0.0285
Svagt negativt
-0.0006
Svagt positivt
0.0155
Svagt positivt
0.0276
Svagt positivt
0.0105
Svagt negativt
-0.0917
Answer 5-
Svagt positivt
0.0122
Svagt positivt
0.1193
Svagt positivt
0.0095
Svagt positivt
0.0721
Svagt positivt
0.0057
Svagt negativt
-0.0083
Svagt negativt
-0.1687
Answer 6-
Svagt positivt
0.0044
Svagt positivt
0.0005
Svagt negativt
-0.0582
Svagt negativt
-0.0004
Svagt positivt
0.0210
Svagt positivt
0.0830
Svagt negativt
-0.0418
Answer 7-
Svagt positivt
0.0242
Svagt positivt
0.0368
Svagt negativt
-0.0521
Svagt negativt
-0.0234
Svagt positivt
0.0403
Svagt positivt
0.0568
Svagt negativt
-0.0597
Answer 8-
Svagt positivt
0.0707
Svagt positivt
0.0781
Svagt negativt
-0.0244
Svagt positivt
0.0140
Svagt positivt
0.0303
Svagt positivt
0.0137
Svagt negativt
-0.1334
Answer 9-
Svagt positivt
0.0564
Svagt positivt
0.1531
Svagt positivt
0.0127
Svagt positivt
0.0769
Svagt negativt
-0.0136
Svagt negativt
-0.0495
Svagt negativt
-0.1752
Answer 10-
Svagt positivt
0.0711
Svagt positivt
0.0700
Svagt negativt
-0.0127
Svagt positivt
0.0246
Svagt positivt
0.0363
Svagt negativt
-0.0156
Svagt negativt
-0.1273
Answer 11-
Svagt positivt
0.0542
Svagt positivt
0.0488
Svagt positivt
0.0086
Svagt positivt
0.0078
Svagt positivt
0.0162
Svagt positivt
0.0315
Svagt negativt
-0.1248
Answer 12-
Svagt positivt
0.0281
Svagt positivt
0.0929
Svagt negativt
-0.0325
Svagt positivt
0.0361
Svagt positivt
0.0276
Svagt positivt
0.0365
Svagt negativt
-0.1482
Answer 13-
Svagt positivt
0.0643
Svagt positivt
0.0916
Svagt negativt
-0.0418
Svagt positivt
0.0237
Svagt positivt
0.0425
Svagt positivt
0.0239
Svagt negativt
-0.1558
Answer 14-
Svagt positivt
0.0697
Svagt positivt
0.1017
Svagt positivt
0.0149
Svagt negativt
-0.0062
Svagt negativt
-0.0087
Svagt negativt
-0.0002
Svagt negativt
-0.1161
Answer 15-
Svagt positivt
0.0603
Svagt positivt
0.1299
Svagt negativt
-0.0379
Svagt positivt
0.0163
Svagt negativt
-0.0091
Svagt positivt
0.0164
Svagt negativt
-0.1204
Answer 16-
Svagt positivt
0.0691
Svagt positivt
0.0221
Svagt negativt
-0.0305
Svagt negativt
-0.0515
Svagt positivt
0.0750
Svagt positivt
0.0187
Svagt negativt
-0.0696


Export till MS Excel
Denna funktionalitet kommer att finnas tillgänglig i dina egna VUCA-undersökningar
Ok

You can not only just create your poll in the Taxa «V.U.C.A enkät designer» (with a unique link and your logo) but also you can earn money by selling its results in the Taxa «Omröstningsbutik», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Taxa «Min SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produktägare SaaS Pet Project SDTest®

Valerii var kvalificerad som en social pedagog-psykolog 1993 och har sedan dess tillämpat sin kunskap i projektledning.
Valerii erhöll en magisterexamen och projekt- och programchefskvalificeringen 2013. Under sitt masterprogram blev han bekant med Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) och spiraldynamik.
Valerii tog olika spiraldynamiktester och använde sin kunskap och erfarenhet för att anpassa den aktuella versionen av SDTest.
Valerii är författaren för att utforska osäkerheten i V.U.C.A. Koncept med spiraldynamik och matematisk statistik i psykologi, mer än 20 internationella undersökningar.
Det här inlägget har 0 Kommentarer
Svara till
Avbryt ett svar
Lämna din kommentar
×
Du hittar ett fel
FÖRESLÅR din rätta VERSION
Fyll i din e-post som önskas
Skicka
Annullera
Bot
sdtest
1
Hallå där! Låt mig fråga dig, känner du redan med spiraldynamik?