Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Veprimet e kompanive në lidhje me personelin në muajin e fundit (po / jo)

2) Veprimet e kompanive në raport me personelin në muajin e fundit (fakt në%)

3) Frikësoj

4) Problemet më të mëdha me të cilat përballet vendi im

5) Cilat cilësi dhe aftësi përdorin udhëheqësit e mirë kur ndërtojnë ekipe të suksesshme?

6) Google. Faktorët që ndikojnë në efikasitetin e ekipit

7) Përparësitë kryesore të punëkërkuesve

8) Makesfarë e bën një shef një udhëheqës të shkëlqyeshëm?

9) Makesfarë i bën njerëzit të suksesshëm në punë?

10) A jeni gati të merrni më pak pagë për të punuar nga distanca?

11) A ekziston ageism?

12) Ageism në karrierë

13) Ageism në jetë

14) Shkaqet e ageizmit

15) Arsyet pse njerëzit heqin dorë (nga Anna Vital)

16) BESIM (#WVS)

17) Sondazhi i lumturisë në Oksford

18) Mirëqenie psikologjike

19) Ku do të ishte mundësia juaj tjetër më tërheqëse?

20) Çfarë do të bëni këtë javë për t'u kujdesur për shëndetin tuaj mendor?

21) Unë jetoj duke menduar për të kaluarën time, të tashmen ose të ardhmen

22) Meritokraci

23) Inteligjenca artificiale dhe fundi i civilizimit

24) Pse njerëzit zvarriten?

25) Diferenca gjinore në ndërtimin e vetëbesimit (IFD Allensbach)

26) Xing.com Vlerësimi i Kulturës

27) Patrick Lencioni "Pesë Mosfunksionimet e një ekipi"

28) Empatia është ...

29) Isfarë është thelbësore për specialistët e IT në zgjedhjen e një oferte pune?

30) Pse njerëzit i rezistojnë ndryshimit (nga Siobhán McHale)

31) Si i rregulloni emocionet tuaja? (Nga Nawal Mustafa M.A.)

32) 21 Aftësi që ju paguajnë përgjithmonë (nga Jeremiah Teo / 赵汉昇)

33) Liria e vërtetë është ...

34) 12 mënyra për të ndërtuar besim me të tjerët (nga Justin Wright)

35) Karakteristikat e një punonjësi të talentuar (nga Instituti i Menaxhimit të Talentëve)

36) 10 çelësa për të motivuar ekipin tuaj


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Frikësoj

Vend
Gjuhe
-
Mail
Përshkallëzoj
Vlera kritike e koeficient korrelacioni
Shpërndarja normale, nga William Sealy Gosset (Student) r = 0.0353
Shpërndarja normale, nga William Sealy Gosset (Student) r = 0.0353
Shpërndarje jo normale, nga Spearman r = 0.0014
ShpërndarjeJo
normal
NormalJo
normal
NormalNormalNormalNormalNormal
Të gjitha pyetjet
Të gjitha pyetjet
Frika ime më e madhe është
Frika ime më e madhe është
Answer 1-
Pozitiv i dobët
0.0297
Pozitiv i dobët
0.0298
Negative dobët
-0.0106
Pozitiv i dobët
0.0970
Pozitiv i dobët
0.0325
Negative dobët
-0.0019
Negative dobët
-0.1558
Answer 2-
Pozitiv i dobët
0.0188
Pozitiv i dobët
0.0076
Negative dobët
-0.0360
Pozitiv i dobët
0.0711
Pozitiv i dobët
0.0387
Pozitiv i dobët
0.0082
Negative dobët
-0.1011
Answer 3-
Pozitiv i dobët
0.0026
Negative dobët
-0.0170
Negative dobët
-0.0443
Negative dobët
-0.0458
Pozitiv i dobët
0.0547
Pozitiv i dobët
0.0808
Negative dobët
-0.0270
Answer 4-
Pozitiv i dobët
0.0332
Pozitiv i dobët
0.0285
Negative dobët
-0.0006
Pozitiv i dobët
0.0155
Pozitiv i dobët
0.0276
Pozitiv i dobët
0.0105
Negative dobët
-0.0917
Answer 5-
Pozitiv i dobët
0.0122
Pozitiv i dobët
0.1193
Pozitiv i dobët
0.0095
Pozitiv i dobët
0.0721
Pozitiv i dobët
0.0057
Negative dobët
-0.0083
Negative dobët
-0.1687
Answer 6-
Pozitiv i dobët
0.0044
Pozitiv i dobët
0.0005
Negative dobët
-0.0582
Negative dobët
-0.0004
Pozitiv i dobët
0.0210
Pozitiv i dobët
0.0830
Negative dobët
-0.0418
Answer 7-
Pozitiv i dobët
0.0242
Pozitiv i dobët
0.0368
Negative dobët
-0.0521
Negative dobët
-0.0234
Pozitiv i dobët
0.0403
Pozitiv i dobët
0.0568
Negative dobët
-0.0597
Answer 8-
Pozitiv i dobët
0.0707
Pozitiv i dobët
0.0781
Negative dobët
-0.0244
Pozitiv i dobët
0.0140
Pozitiv i dobët
0.0303
Pozitiv i dobët
0.0137
Negative dobët
-0.1334
Answer 9-
Pozitiv i dobët
0.0564
Pozitiv i dobët
0.1531
Pozitiv i dobët
0.0127
Pozitiv i dobët
0.0769
Negative dobët
-0.0136
Negative dobët
-0.0495
Negative dobët
-0.1752
Answer 10-
Pozitiv i dobët
0.0711
Pozitiv i dobët
0.0700
Negative dobët
-0.0127
Pozitiv i dobët
0.0246
Pozitiv i dobët
0.0363
Negative dobët
-0.0156
Negative dobët
-0.1273
Answer 11-
Pozitiv i dobët
0.0542
Pozitiv i dobët
0.0488
Pozitiv i dobët
0.0086
Pozitiv i dobët
0.0078
Pozitiv i dobët
0.0162
Pozitiv i dobët
0.0315
Negative dobët
-0.1248
Answer 12-
Pozitiv i dobët
0.0281
Pozitiv i dobët
0.0929
Negative dobët
-0.0325
Pozitiv i dobët
0.0361
Pozitiv i dobët
0.0276
Pozitiv i dobët
0.0365
Negative dobët
-0.1482
Answer 13-
Pozitiv i dobët
0.0643
Pozitiv i dobët
0.0916
Negative dobët
-0.0418
Pozitiv i dobët
0.0237
Pozitiv i dobët
0.0425
Pozitiv i dobët
0.0239
Negative dobët
-0.1558
Answer 14-
Pozitiv i dobët
0.0697
Pozitiv i dobët
0.1017
Pozitiv i dobët
0.0149
Negative dobët
-0.0062
Negative dobët
-0.0087
Negative dobët
-0.0002
Negative dobët
-0.1161
Answer 15-
Pozitiv i dobët
0.0603
Pozitiv i dobët
0.1299
Negative dobët
-0.0379
Pozitiv i dobët
0.0163
Negative dobët
-0.0091
Pozitiv i dobët
0.0164
Negative dobët
-0.1204
Answer 16-
Pozitiv i dobët
0.0691
Pozitiv i dobët
0.0221
Negative dobët
-0.0305
Negative dobët
-0.0515
Pozitiv i dobët
0.0750
Pozitiv i dobët
0.0187
Negative dobët
-0.0696


Eksport në MS Excel
Kjo funksionalitet do të jetë në dispozicion në sondazhet tuaja të VUCA
Ne rregull

You can not only just create your poll in the Tarifë «projektuesi V.U.C.A sondazh» (with a unique link and your logo) but also you can earn money by selling its results in the Tarifë «Dyqan votimi», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarifë «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Pronari i produktit SaaS Pet Project SDTEST®

Valerii u kualifikua si pedagog-psikolog social në 1993 dhe që atëherë ka zbatuar njohuritë e tij në menaxhimin e projektit.
Valerii mori një diplomë master dhe kualifikimin e menaxherit të projektit dhe programit në 2013. Gjatë programit të tij master, ai u njoh me hartën e rrugës së projektit (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) dhe Spiral Dynamics.
Valerii mori teste të ndryshme të dinamikës spirale dhe përdori njohuritë dhe përvojën e tij për të përshtatur versionin aktual të SDTest.
Valerii është autori i eksplorimit të pasigurisë së V.U.C.A. Koncepti duke përdorur dinamikën spirale dhe statistikat matematikore në psikologji, më shumë se 20 sondazhe ndërkombëtare.
Ky postim ka 0 Komente
Ti përgjigjeni
Anuloni një përgjigje
Lini komentin tuaj
×
Gjeni ndonjë gabim
Propozojnë versioni juaj i saktë
Shkruani e-mailin tuaj si e dëshiruar
Send
Anuloj
Bot
sdtest
1
Përshëndetje! Më lejoni t'ju pyes, a jeni njohur tashmë me Dynamics Spiral?