Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Acțiuni ale companiilor în raport cu personalul din ultima lună (da / nu)

2) Acțiuni ale companiilor în legătură cu personalul din ultima lună (fapt în%)

3) Temerile

4) Cele mai mari probleme cu care se confruntă țara mea

5) Ce calități și abilități folosesc liderii buni atunci când construiesc echipe de succes?

6) Google. Factori care afectează eficiența echipei

7) Principalele priorități ale solicitanților de locuri de muncă

8) Ce face un șef un mare lider?

9) Ce îi face pe oameni să aibă succes la serviciu?

10) Sunteți gata să primiți mai puțin salariu pentru a lucra de la distanță?

11) Există ageismul?

12) Ageismul în carieră

13) Ageismul în viață

14) Cauzele ageismului

15) Motivele pentru care oamenii renunță (de Anna Vital)

16) ÎNCREDERE (#WVS)

17) Oxford Happiness Survey

18) Bunăstarea psihologică

19) Unde ar fi următoarea ta cea mai interesantă oportunitate?

20) Ce vei face săptămâna aceasta pentru a avea grijă de sănătatea ta mentală?

21) Trăiesc gândindu -mă la trecutul, prezentul meu sau viitorul

22) Meritocrație

23) Inteligența artificială și sfârșitul civilizației

24) De ce se amânează oamenii?

25) Diferența de gen în construirea încrederii în sine (IFD Allensbach)

26) Xing.com Evaluarea culturii

27) „Cele cinci disfuncții ale unei echipe” ale lui Patrick Lencioni

28) Empatia este ...

29) Ce este esențial pentru specialiștii IT în alegerea unei oferte de muncă?

30) De ce oamenii rezistă schimbărilor (de Siobhán McHale)

31) Cum îți reglementezi emoțiile? (de Nawal Mustafa M.A.)

32) 21 Abilități care vă plătesc pentru totdeauna (de Jeremiah Teo / 赵汉昇)

33) Libertatea reală este ...

34) 12 moduri de a construi încredere cu ceilalți (de Justin Wright)

35) Caracteristicile unui angajat talentat (de către Institutul de Management Talent)

36) 10 taste pentru motivarea echipei tale


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Temerile

Țară
Limba
-
Mail
Recalcula
Valoarea critică a coeficientului de corelație
Distribuție normală, de William Sealy Gosset (student) r = 0.0353
Distribuție normală, de William Sealy Gosset (student) r = 0.0353
Distribuție non -normală, de Spearman r = 0.0014
DistribuțieNon
normal
NormalNon
normal
NormalNormalNormalNormalNormal
Toate întrebările
Toate întrebările
Cea mai mare frica mea este
Cea mai mare frica mea este
Answer 1-
Slab pozitiv
0.0297
Slab pozitiv
0.0298
Negativ slab
-0.0106
Slab pozitiv
0.0970
Slab pozitiv
0.0325
Negativ slab
-0.0019
Negativ slab
-0.1558
Answer 2-
Slab pozitiv
0.0188
Slab pozitiv
0.0076
Negativ slab
-0.0360
Slab pozitiv
0.0711
Slab pozitiv
0.0387
Slab pozitiv
0.0082
Negativ slab
-0.1011
Answer 3-
Slab pozitiv
0.0026
Negativ slab
-0.0170
Negativ slab
-0.0443
Negativ slab
-0.0458
Slab pozitiv
0.0547
Slab pozitiv
0.0808
Negativ slab
-0.0270
Answer 4-
Slab pozitiv
0.0332
Slab pozitiv
0.0285
Negativ slab
-0.0006
Slab pozitiv
0.0155
Slab pozitiv
0.0276
Slab pozitiv
0.0105
Negativ slab
-0.0917
Answer 5-
Slab pozitiv
0.0122
Slab pozitiv
0.1193
Slab pozitiv
0.0095
Slab pozitiv
0.0721
Slab pozitiv
0.0057
Negativ slab
-0.0083
Negativ slab
-0.1687
Answer 6-
Slab pozitiv
0.0044
Slab pozitiv
0.0005
Negativ slab
-0.0582
Negativ slab
-0.0004
Slab pozitiv
0.0210
Slab pozitiv
0.0830
Negativ slab
-0.0418
Answer 7-
Slab pozitiv
0.0242
Slab pozitiv
0.0368
Negativ slab
-0.0521
Negativ slab
-0.0234
Slab pozitiv
0.0403
Slab pozitiv
0.0568
Negativ slab
-0.0597
Answer 8-
Slab pozitiv
0.0707
Slab pozitiv
0.0781
Negativ slab
-0.0244
Slab pozitiv
0.0140
Slab pozitiv
0.0303
Slab pozitiv
0.0137
Negativ slab
-0.1334
Answer 9-
Slab pozitiv
0.0564
Slab pozitiv
0.1531
Slab pozitiv
0.0127
Slab pozitiv
0.0769
Negativ slab
-0.0136
Negativ slab
-0.0495
Negativ slab
-0.1752
Answer 10-
Slab pozitiv
0.0711
Slab pozitiv
0.0700
Negativ slab
-0.0127
Slab pozitiv
0.0246
Slab pozitiv
0.0363
Negativ slab
-0.0156
Negativ slab
-0.1273
Answer 11-
Slab pozitiv
0.0542
Slab pozitiv
0.0488
Slab pozitiv
0.0086
Slab pozitiv
0.0078
Slab pozitiv
0.0162
Slab pozitiv
0.0315
Negativ slab
-0.1248
Answer 12-
Slab pozitiv
0.0281
Slab pozitiv
0.0929
Negativ slab
-0.0325
Slab pozitiv
0.0361
Slab pozitiv
0.0276
Slab pozitiv
0.0365
Negativ slab
-0.1482
Answer 13-
Slab pozitiv
0.0643
Slab pozitiv
0.0916
Negativ slab
-0.0418
Slab pozitiv
0.0237
Slab pozitiv
0.0425
Slab pozitiv
0.0239
Negativ slab
-0.1558
Answer 14-
Slab pozitiv
0.0697
Slab pozitiv
0.1017
Slab pozitiv
0.0149
Negativ slab
-0.0062
Negativ slab
-0.0087
Negativ slab
-0.0002
Negativ slab
-0.1161
Answer 15-
Slab pozitiv
0.0603
Slab pozitiv
0.1299
Negativ slab
-0.0379
Slab pozitiv
0.0163
Negativ slab
-0.0091
Slab pozitiv
0.0164
Negativ slab
-0.1204
Answer 16-
Slab pozitiv
0.0691
Slab pozitiv
0.0221
Negativ slab
-0.0305
Negativ slab
-0.0515
Slab pozitiv
0.0750
Slab pozitiv
0.0187
Negativ slab
-0.0696


Export în MS Excel
Această funcție va fi disponibilă în propriile dvs. sondaje VUCA
O.K

You can not only just create your poll in the Tarifar «V.U.C.A designer de sondaj» (with a unique link and your logo) but also you can earn money by selling its results in the Tarifar «Magazin de sondaj», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarifar «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Proprietar de produse SaaS Pet Project SDTest®

Valerii a fost calificat ca pedagog-psiholog pe pedagog social în 1993 și de atunci și-a aplicat cunoștințele în managementul de proiect.
Valerii a obținut o diplomă de master și calificarea managerului de proiect și program în 2013. În timpul programului său de master, s -a familiarizat cu foaia de parcurs a proiectului (GPM Deutsche Gesellschaft Für ProjektManagement e. V.) și dinamica spirală.
Valerii a făcut diverse teste de dinamică în spirală și și -a folosit cunoștințele și experiența pentru a adapta versiunea actuală a SDTest.
Valerii este autorul explorării incertitudinii V.U.C.A. Conceptul folosind dinamica spirală și statisticile matematice în psihologie, mai mult de 20 de sondaje internaționale.
Această postare are 0 Comentarii
Raspunde la
Anulați un răspuns
Lasă -ți comentariul
×
Găsiți o eroare
PROPUNEM VERSIUNEA corectă
Introduceți adresa dvs. de e-mail după cum doriți
Trimite
Anulare
Bot
sdtest
1
Bună! Permiteți -mi să vă întreb, sunteți deja familiarizați cu dinamica spirală?