Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) 지난 달 직원과 관련하여 회사의 행동 (예 / 아니오)

2) 지난 달의 인원과 관련하여 회사의 행동 (사실 %)

3) 두려움

4) 우리나라가 직면 한 가장 큰 문제

5) 성공적인 팀을 구성 할 때 훌륭한 리더는 어떤 자질과 능력을 사용합니까?

6) Google. 팀 효율성에 영향을 미치는 요인

7) 구직자의 주요 우선 순위

8) 상사를 위대한 지도자로 만드는 이유는 무엇입니까?

9) 사람들이 직장에서 성공하게 만드는 이유는 무엇입니까?

10) 원격으로 일할 수있는 임금을 적게받을 준비가 되셨습니까?

11) 연령대가 존재합니까?

12) 경력의 연령대

13) 인생의 연령대

14) 연령대의 원인

15) 사람들이 포기하는 이유 (Anna Vital)

16) 신뢰하다 (#WVS)

17) 옥스포드 행복 설문 조사

18) 심리적 안녕

19) 다음으로 가장 흥미 진진한 기회는 어디에 있습니까?

20) 이번 주에 정신 건강을 돌보기 위해 무엇을 하시겠습니까?

21) 나는 내 과거, 현재 또는 미래에 대해 생각하고 산다

22) 메리 토크 라시

23) 인공 지능과 문명의 끝

24) 사람들은 왜 미루는가?

25) 자신감 구축의 성별 차이 (IFD Allensbach)

26) Xing.com 문화 평가

27) Patrick Lencioni의 "팀의 5 가지 기능 장애"

28) 공감은 ...

29) IT 전문가가 구인 제안을 선택하는 데 필수적인 점은 무엇입니까?

30) 사람들이 변화에 저항하는 이유 (Siobhán McHale)

31) 감정을 어떻게 조절합니까? (Nawal Mustafa M.A.)

32) 영원히 당신에게 지불하는 21 기술 (예레미야 테오 / 赵汉昇)

33) 진정한 자유는 ...

34) 다른 사람과의 신뢰를 구축하는 12 가지 방법 (저스틴 라이트)

35) 재능있는 직원의 특성 (Talent Management Institute의)

36) 팀 동기를 부여하는 10 개의 열쇠


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

두려움

국가
언어
-
Mail
다시 계산하십시오
상관 계수의 임계 값
William Sealy Gosset (학생)의 정규 분포 r = 0.0353
William Sealy Gosset (학생)의 정규 분포 r = 0.0353
Spearman에 의한 비 정규 분포 r = 0.0014
분포
정상
정상
정상
정상정상정상정상정상
모든 질문
모든 질문
나의 가장 큰 두려움은
나의 가장 큰 두려움은
Answer 1-
약한 긍정적
0.0297
약한 긍정적
0.0298
약한 부정
-0.0106
약한 긍정적
0.0970
약한 긍정적
0.0325
약한 부정
-0.0019
약한 부정
-0.1558
Answer 2-
약한 긍정적
0.0188
약한 긍정적
0.0076
약한 부정
-0.0360
약한 긍정적
0.0711
약한 긍정적
0.0387
약한 긍정적
0.0082
약한 부정
-0.1011
Answer 3-
약한 긍정적
0.0026
약한 부정
-0.0170
약한 부정
-0.0443
약한 부정
-0.0458
약한 긍정적
0.0547
약한 긍정적
0.0808
약한 부정
-0.0270
Answer 4-
약한 긍정적
0.0332
약한 긍정적
0.0285
약한 부정
-0.0006
약한 긍정적
0.0155
약한 긍정적
0.0276
약한 긍정적
0.0105
약한 부정
-0.0917
Answer 5-
약한 긍정적
0.0122
약한 긍정적
0.1193
약한 긍정적
0.0095
약한 긍정적
0.0721
약한 긍정적
0.0057
약한 부정
-0.0083
약한 부정
-0.1687
Answer 6-
약한 긍정적
0.0044
약한 긍정적
0.0005
약한 부정
-0.0582
약한 부정
-0.0004
약한 긍정적
0.0210
약한 긍정적
0.0830
약한 부정
-0.0418
Answer 7-
약한 긍정적
0.0242
약한 긍정적
0.0368
약한 부정
-0.0521
약한 부정
-0.0234
약한 긍정적
0.0403
약한 긍정적
0.0568
약한 부정
-0.0597
Answer 8-
약한 긍정적
0.0707
약한 긍정적
0.0781
약한 부정
-0.0244
약한 긍정적
0.0140
약한 긍정적
0.0303
약한 긍정적
0.0137
약한 부정
-0.1334
Answer 9-
약한 긍정적
0.0564
약한 긍정적
0.1531
약한 긍정적
0.0127
약한 긍정적
0.0769
약한 부정
-0.0136
약한 부정
-0.0495
약한 부정
-0.1752
Answer 10-
약한 긍정적
0.0711
약한 긍정적
0.0700
약한 부정
-0.0127
약한 긍정적
0.0246
약한 긍정적
0.0363
약한 부정
-0.0156
약한 부정
-0.1273
Answer 11-
약한 긍정적
0.0542
약한 긍정적
0.0488
약한 긍정적
0.0086
약한 긍정적
0.0078
약한 긍정적
0.0162
약한 긍정적
0.0315
약한 부정
-0.1248
Answer 12-
약한 긍정적
0.0281
약한 긍정적
0.0929
약한 부정
-0.0325
약한 긍정적
0.0361
약한 긍정적
0.0276
약한 긍정적
0.0365
약한 부정
-0.1482
Answer 13-
약한 긍정적
0.0643
약한 긍정적
0.0916
약한 부정
-0.0418
약한 긍정적
0.0237
약한 긍정적
0.0425
약한 긍정적
0.0239
약한 부정
-0.1558
Answer 14-
약한 긍정적
0.0697
약한 긍정적
0.1017
약한 긍정적
0.0149
약한 부정
-0.0062
약한 부정
-0.0087
약한 부정
-0.0002
약한 부정
-0.1161
Answer 15-
약한 긍정적
0.0603
약한 긍정적
0.1299
약한 부정
-0.0379
약한 긍정적
0.0163
약한 부정
-0.0091
약한 긍정적
0.0164
약한 부정
-0.1204
Answer 16-
약한 긍정적
0.0691
약한 긍정적
0.0221
약한 부정
-0.0305
약한 부정
-0.0515
약한 긍정적
0.0750
약한 긍정적
0.0187
약한 부정
-0.0696


MS Excel로 내보내기
이 기능은 자신의 VUCA 폴링에서 사용할 수 있습니다.
확인

You can not only just create your poll in the 관세 «V.U.C.A 설문 조사 디자이너» (with a unique link and your logo) but also you can earn money by selling its results in the 관세 «설문 조사 상점», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing 관세 «내 SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
제품 소유자 Saas Pet Project SDTest®

Valerii는 1993 년에 사회 교육학 심리학자로 자격을 얻었으며 이후 프로젝트 관리에 대한 지식을 적용했습니다.
Valerii는 2013 년 석사 학위 및 프로젝트 및 프로그램 관리자 자격을 취득했습니다. 그의 석사 프로그램에서 그는 Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) 및 나선형 역학에 익숙해졌습니다.
Valerii는 다양한 나선 역학 테스트를 수행했으며 그의 지식과 경험을 사용하여 현재 버전의 SDTest를 조정했습니다.
Valerii는 V.U.C.A.의 불확실성을 탐구하는 저자입니다. 심리학에서 나선형 역학 및 수학적 통계를 사용한 개념, 20 개 이상의 국제 여론 조사.
이 게시물이 있습니다 0 코멘트
답장하다
답장을 취소하십시오
의견을 남겨주세요
×
당신은 오류 찾기
당신의 올바른 버전을 제안한다
원하는대로 이메일을 입력
보내다
취소
Bot
sdtest
1
안녕하세요! 내가 당신에게 물어 보겠습니다. 당신은 이미 나선형 역학에 익숙합니까?