Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Įmonės veiksmai, susiję su personalu per pastarąjį mėnesį (taip / ne)

2) Įmonių veiksmai, susiję su personalo per pastarąjį mėnesį (tai)

3) Baimė

4) Didžiausios mano šalies problemos

5) Kokias savybes ir sugebėjimus geri lyderiai naudoja kurdami sėkmingas komandas?

6) Google. Veiksniai, darantys įtaką komandos efektyvumui

7) Pagrindiniai darbo ieškančių asmenų prioritetai

8) Kas daro viršininką puikiu lyderiu?

9) Kas daro žmones sėkmingus darbe?

10) Ar esate pasirengęs gauti mažiau mokėjimo už darbą nuotoliniu būdu?

11) Ar egzistuoja ageizmas?

12) Ageizmas karjeroje

13) Ageizmas gyvenime

14) Ageizmo priežastys

15) Priežastys, kodėl žmonės atsisako (pateikė Anna Vital)

16) Pasitikėjimas (#WVS)

17) Oksfordo laimės apklausa

18) Psichologinė gerovė

19) Kur būtų kita jūsų įdomiausia galimybė?

20) Ką darysite šią savaitę, kad prižiūrėtumėte savo psichinę sveikatą?

21) Aš gyvenu galvodamas apie savo praeitį, dabartį ar ateitį

22) Meritokratija

23) Dirbtinis intelektas ir civilizacijos pabaiga

24) Kodėl žmonės vilkinasi?

25) Lyčių skirtumas kuriant pasitikėjimą savimi (IFD Allensbach)

26) Xing.com kultūros vertinimas

27) Patricko Lencioni „Penki komandos disfunkcijos“

28) Empatija yra ...

29) Kas yra būtina IT specialistams renkantis darbo pasiūlymą?

30) Kodėl žmonės priešinasi pokyčiams (pateikė Siobhán McHale)

31) Kaip reguliuojate savo emocijas? (Autorius: Nawal Mustafa M.A.)

32) 21 įgūdžiai, kurie jums moka amžinai (pateikė Jeremiah Teo / 赵汉昇)

33) Tikra laisvė yra ...

34) 12 būdų, kaip sukurti pasitikėjimą su kitais (pateikė Justinas Wrightas)

35) Talentingo darbuotojo savybės (talentų valdymo institutas)

36) 10 raktų, kaip motyvuoti savo komandą


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Baimė

Šalis
kalba
-
Mail
Perskaičiuoti
Kritinė reikšmė koreliacijos koeficientas
Normalus platinimas, pateikė William Sealy Gosset (studentas) r = 0.0353
Normalus platinimas, pateikė William Sealy Gosset (studentas) r = 0.0353
Ne normalus pasiskirstymas, autorius Spearman r = 0.0014
PaskirstymasNe
normalu
NormalusNe
normalu
NormalusNormalusNormalusNormalusNormalus
Visi klausimai
Visi klausimai
Mano didžiausia baimė yra
Mano didžiausia baimė yra
Answer 1-
Silpnas teigiamas
0.0297
Silpnas teigiamas
0.0298
Silpnas neigiamas
-0.0106
Silpnas teigiamas
0.0970
Silpnas teigiamas
0.0325
Silpnas neigiamas
-0.0019
Silpnas neigiamas
-0.1558
Answer 2-
Silpnas teigiamas
0.0188
Silpnas teigiamas
0.0076
Silpnas neigiamas
-0.0360
Silpnas teigiamas
0.0711
Silpnas teigiamas
0.0387
Silpnas teigiamas
0.0082
Silpnas neigiamas
-0.1011
Answer 3-
Silpnas teigiamas
0.0026
Silpnas neigiamas
-0.0170
Silpnas neigiamas
-0.0443
Silpnas neigiamas
-0.0458
Silpnas teigiamas
0.0547
Silpnas teigiamas
0.0808
Silpnas neigiamas
-0.0270
Answer 4-
Silpnas teigiamas
0.0332
Silpnas teigiamas
0.0285
Silpnas neigiamas
-0.0006
Silpnas teigiamas
0.0155
Silpnas teigiamas
0.0276
Silpnas teigiamas
0.0105
Silpnas neigiamas
-0.0917
Answer 5-
Silpnas teigiamas
0.0122
Silpnas teigiamas
0.1193
Silpnas teigiamas
0.0095
Silpnas teigiamas
0.0721
Silpnas teigiamas
0.0057
Silpnas neigiamas
-0.0083
Silpnas neigiamas
-0.1687
Answer 6-
Silpnas teigiamas
0.0044
Silpnas teigiamas
0.0005
Silpnas neigiamas
-0.0582
Silpnas neigiamas
-0.0004
Silpnas teigiamas
0.0210
Silpnas teigiamas
0.0830
Silpnas neigiamas
-0.0418
Answer 7-
Silpnas teigiamas
0.0242
Silpnas teigiamas
0.0368
Silpnas neigiamas
-0.0521
Silpnas neigiamas
-0.0234
Silpnas teigiamas
0.0403
Silpnas teigiamas
0.0568
Silpnas neigiamas
-0.0597
Answer 8-
Silpnas teigiamas
0.0707
Silpnas teigiamas
0.0781
Silpnas neigiamas
-0.0244
Silpnas teigiamas
0.0140
Silpnas teigiamas
0.0303
Silpnas teigiamas
0.0137
Silpnas neigiamas
-0.1334
Answer 9-
Silpnas teigiamas
0.0564
Silpnas teigiamas
0.1531
Silpnas teigiamas
0.0127
Silpnas teigiamas
0.0769
Silpnas neigiamas
-0.0136
Silpnas neigiamas
-0.0495
Silpnas neigiamas
-0.1752
Answer 10-
Silpnas teigiamas
0.0711
Silpnas teigiamas
0.0700
Silpnas neigiamas
-0.0127
Silpnas teigiamas
0.0246
Silpnas teigiamas
0.0363
Silpnas neigiamas
-0.0156
Silpnas neigiamas
-0.1273
Answer 11-
Silpnas teigiamas
0.0542
Silpnas teigiamas
0.0488
Silpnas teigiamas
0.0086
Silpnas teigiamas
0.0078
Silpnas teigiamas
0.0162
Silpnas teigiamas
0.0315
Silpnas neigiamas
-0.1248
Answer 12-
Silpnas teigiamas
0.0281
Silpnas teigiamas
0.0929
Silpnas neigiamas
-0.0325
Silpnas teigiamas
0.0361
Silpnas teigiamas
0.0276
Silpnas teigiamas
0.0365
Silpnas neigiamas
-0.1482
Answer 13-
Silpnas teigiamas
0.0643
Silpnas teigiamas
0.0916
Silpnas neigiamas
-0.0418
Silpnas teigiamas
0.0237
Silpnas teigiamas
0.0425
Silpnas teigiamas
0.0239
Silpnas neigiamas
-0.1558
Answer 14-
Silpnas teigiamas
0.0697
Silpnas teigiamas
0.1017
Silpnas teigiamas
0.0149
Silpnas neigiamas
-0.0062
Silpnas neigiamas
-0.0087
Silpnas neigiamas
-0.0002
Silpnas neigiamas
-0.1161
Answer 15-
Silpnas teigiamas
0.0603
Silpnas teigiamas
0.1299
Silpnas neigiamas
-0.0379
Silpnas teigiamas
0.0163
Silpnas neigiamas
-0.0091
Silpnas teigiamas
0.0164
Silpnas neigiamas
-0.1204
Answer 16-
Silpnas teigiamas
0.0691
Silpnas teigiamas
0.0221
Silpnas neigiamas
-0.0305
Silpnas neigiamas
-0.0515
Silpnas teigiamas
0.0750
Silpnas teigiamas
0.0187
Silpnas neigiamas
-0.0696


Eksportas į MS Excel
Ši funkcija bus prieinama jūsų VUCA apklausose
Gerai

You can not only just create your poll in the tarifas «V.U.C.A apklausa dizaineris» (with a unique link and your logo) but also you can earn money by selling its results in the tarifas «Apklausos parduotuvė», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifas «Mano SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produkto savininkas „Saa Pet Project SDTest®“

1993 m. Valerii buvo kvalifikuotas kaip socialinis pedagogo-psichologas ir nuo to laiko pritaikė savo žinias projektų valdyme.
2013 m. Valerii įgijo magistro laipsnį ir projekto bei programų vadovo kvalifikaciją. Vykdydamas magistro programą, jis susipažino su projekto planu (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) ir „Spiral Dynamics“.
Valerii ėmėsi įvairių „Spiral Dynamics“ testų ir panaudojo savo žinias bei patirtį, kad pritaikytų dabartinę SDTEST versiją.
Valerii yra autorius tyrinėti V.U.C.A. Koncepcija naudojant spiralinę dinamiką ir matematinę statistiką psichologijoje, daugiau nei 20 tarptautinių apklausų.
Šis įrašas turi 0 Komentarai
Atsakinėti į
Atšaukti atsakymą
Palikite savo komentarą
×
Rasite klaidą
SIŪLYTI SAVO Teisingas versija
Įveskite savo e-mail kaip norim
Siųsti
atšaukti
Bot
sdtest
1
Sveiki! Leiskite paklausti tavęs, ar jūs jau susipažinote su spiralės dinamika?