Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Acties van bedrijven met betrekking tot personeel in de afgelopen maand (ja / nee)

2) Acties van bedrijven in relatie tot personeel in de afgelopen maand (feit in%)

3) Angsten

4) Grootste problemen waarmee mijn land wordt geconfronteerd

5) Welke kwaliteiten en vaardigheden gebruiken goede leiders bij het bouwen van succesvolle teams?

6) Google. Factoren die invloed hebben op de effictiviteit van het team

7) De belangrijkste prioriteiten van werkzoekenden

8) Wat maakt een baas een geweldige leider?

9) Wat maakt mensen succesvol op het werk?

10) Ben je klaar om minder loon te ontvangen om op afstand te werken?

11) Bestaat Ageism?

12) Ageisme in carrière

13) Ageisme in het leven

14) Oorzaken van leeftijdsgebruik

15) Redenen waarom mensen opgeven (door Anna Vital)

16) VERTROUWEN (#WVS)

17) Oxford Happiness Survey

18) Geestelijk welzijn

19) Waar zou je volgende meest opwindende kans zijn?

20) Wat ga je deze week doen om voor je geestelijke gezondheid te zorgen?

21) Ik leef nadenken over mijn verleden, heden of toekomst

22) Meritocratie

23) Kunstmatige intelligentie en het einde van de beschaving

24) Waarom stellen mensen uit?

25) Genderverschil bij het opbouwen van zelfvertrouwen (IFD AllensBach)

26) Xing.com Cultuurbeoordeling

27) Patrick Lencioni's "De vijf disfuncties van een team"

28) Empathie is ...

29) Wat is essentieel voor IT -specialisten bij het kiezen van een vacature?

30) Waarom mensen zich verzetten tegen verandering (door Siobhán McHale)

31) Hoe reguleer je je emoties? (door Nawal Mustafa M.A.)

32) 21 vaardigheden die je voor altijd betalen (door Jeremiah Teo / 赵汉昇)

33) Echte vrijheid is ...

34) 12 manieren om vertrouwen bij anderen op te bouwen (door Justin Wright)

35) Kenmerken van een getalenteerde werknemer (door Talent Management Institute)

36) 10 sleutels om uw team te motiveren


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Angsten

land
Taal
-
Mail
Opnieuw berekenen
Kritische waarde van de correlatiecoëfficiënt
Normale verdeling, door William Sealy Gosset (student) r = 0.0353
Normale verdeling, door William Sealy Gosset (student) r = 0.0353
Niet -normale verdeling, door Spearman r = 0.0014
VerdelingNiet
normaal
NormaalNiet
normaal
NormaalNormaalNormaalNormaalNormaal
Alle vragen
Alle vragen
Mijn grootste angst is
Mijn grootste angst is
Answer 1-
Zwak positief
0.0297
Zwak positief
0.0298
Zwak negatief
-0.0106
Zwak positief
0.0970
Zwak positief
0.0325
Zwak negatief
-0.0019
Zwak negatief
-0.1558
Answer 2-
Zwak positief
0.0188
Zwak positief
0.0076
Zwak negatief
-0.0360
Zwak positief
0.0711
Zwak positief
0.0387
Zwak positief
0.0082
Zwak negatief
-0.1011
Answer 3-
Zwak positief
0.0026
Zwak negatief
-0.0170
Zwak negatief
-0.0443
Zwak negatief
-0.0458
Zwak positief
0.0547
Zwak positief
0.0808
Zwak negatief
-0.0270
Answer 4-
Zwak positief
0.0332
Zwak positief
0.0285
Zwak negatief
-0.0006
Zwak positief
0.0155
Zwak positief
0.0276
Zwak positief
0.0105
Zwak negatief
-0.0917
Answer 5-
Zwak positief
0.0122
Zwak positief
0.1193
Zwak positief
0.0095
Zwak positief
0.0721
Zwak positief
0.0057
Zwak negatief
-0.0083
Zwak negatief
-0.1687
Answer 6-
Zwak positief
0.0044
Zwak positief
0.0005
Zwak negatief
-0.0582
Zwak negatief
-0.0004
Zwak positief
0.0210
Zwak positief
0.0830
Zwak negatief
-0.0418
Answer 7-
Zwak positief
0.0242
Zwak positief
0.0368
Zwak negatief
-0.0521
Zwak negatief
-0.0234
Zwak positief
0.0403
Zwak positief
0.0568
Zwak negatief
-0.0597
Answer 8-
Zwak positief
0.0707
Zwak positief
0.0781
Zwak negatief
-0.0244
Zwak positief
0.0140
Zwak positief
0.0303
Zwak positief
0.0137
Zwak negatief
-0.1334
Answer 9-
Zwak positief
0.0564
Zwak positief
0.1531
Zwak positief
0.0127
Zwak positief
0.0769
Zwak negatief
-0.0136
Zwak negatief
-0.0495
Zwak negatief
-0.1752
Answer 10-
Zwak positief
0.0711
Zwak positief
0.0700
Zwak negatief
-0.0127
Zwak positief
0.0246
Zwak positief
0.0363
Zwak negatief
-0.0156
Zwak negatief
-0.1273
Answer 11-
Zwak positief
0.0542
Zwak positief
0.0488
Zwak positief
0.0086
Zwak positief
0.0078
Zwak positief
0.0162
Zwak positief
0.0315
Zwak negatief
-0.1248
Answer 12-
Zwak positief
0.0281
Zwak positief
0.0929
Zwak negatief
-0.0325
Zwak positief
0.0361
Zwak positief
0.0276
Zwak positief
0.0365
Zwak negatief
-0.1482
Answer 13-
Zwak positief
0.0643
Zwak positief
0.0916
Zwak negatief
-0.0418
Zwak positief
0.0237
Zwak positief
0.0425
Zwak positief
0.0239
Zwak negatief
-0.1558
Answer 14-
Zwak positief
0.0697
Zwak positief
0.1017
Zwak positief
0.0149
Zwak negatief
-0.0062
Zwak negatief
-0.0087
Zwak negatief
-0.0002
Zwak negatief
-0.1161
Answer 15-
Zwak positief
0.0603
Zwak positief
0.1299
Zwak negatief
-0.0379
Zwak positief
0.0163
Zwak negatief
-0.0091
Zwak positief
0.0164
Zwak negatief
-0.1204
Answer 16-
Zwak positief
0.0691
Zwak positief
0.0221
Zwak negatief
-0.0305
Zwak negatief
-0.0515
Zwak positief
0.0750
Zwak positief
0.0187
Zwak negatief
-0.0696


Exporteren naar MS Excel
Deze functionaliteit is beschikbaar in uw eigen VUCA-peilingen
OK

You can not only just create your poll in the tarief «V.U.C.A poll ontwerper» (with a unique link and your logo) but also you can earn money by selling its results in the tarief «Peilingswinkel», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarief «Mijn SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Producteigenaar SaaS Pet Project Sdtest®

Valerii was in 1993 gekwalificeerd als een sociale pedagoog-psycholoog en heeft sindsdien zijn kennis toegepast in projectmanagement.
Valerii behaalde een masterdiploma en de kwalificatie van het project- en programmabeheerder in 2013. Tijdens zijn masterprogramma raakte hij bekend met Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) en spiraalvormige dynamiek.
Valerii heeft verschillende spiraalvormige dynamiektests uitgevoerd en gebruikte zijn kennis en ervaring om de huidige versie van SDTest aan te passen.
Valerii is de auteur van het verkennen van de onzekerheid van de V.U.C.A. Concept met behulp van spiraalvormige dynamiek en wiskundige statistieken in de psychologie, meer dan 20 internationale peilingen.
Dit bericht heeft 0 Opmerkingen
Antwoord aan
Annuleer een antwoord
Laat jouw reactie achter
×
JE EEN FOUT
STEL JE juiste versie
Vul uw e-mail naar wens
Sturen
Annuleer
Bot
sdtest
1
Hallo daar! Laat me je vragen, ben je al bekend met spiraalvormige dynamiek?