Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Aktionen von Unternehmen in Bezug auf Personal im letzten Monat (Ja / Nein)

2) Aktionen von Unternehmen in Bezug auf das Personal im letzten Monat (Tatsache in%)

3) Ängste

4) Größte Probleme mit meinem Land

5) Welche Eigenschaften und Fähigkeiten nutzen gute Führungskräfte beim Aufbau erfolgreicher Teams?

6) Google. Faktoren, die sich auf die Teamwirksamkeit auswirken

7) Die Hauptprioritäten von Arbeitssuchenden

8) Was macht einen Chef zu einem großartigen Anführer?

9) Was macht die Menschen bei der Arbeit erfolgreich?

10) Sind Sie bereit, weniger Bezahlung für die Arbeit aus der Ferne zu erhalten?

11) Existiert AGEUSM?

12) AGEUSM in der Karriere

13) AGEUSM IM DIFE

14) Ursachen des Altersmus

15) Gründe, warum Menschen aufgeben (von Anna Vital)

16) VERTRAUEN (#WVS)

17) Oxford Glücksumfrage

18) Geistiges Wohlergehen

19) Wo wäre Ihre nächste aufregendste Gelegenheit?

20) Was werden Sie diese Woche tun, um sich um Ihre geistige Gesundheit zu kümmern?

21) Ich lebe über meine Vergangenheit, Gegenwart oder Zukunft nach

22) Meritokratie

23) Künstliche Intelligenz und das Ende der Zivilisation

24) Warum zögern die Menschen?

25) Geschlechtsunterschied beim Aufbau von Selbstvertrauen (IFD Allensbach)

26) Xing.com -Kulturbewertung

27) Patrick Lencionis "Die fünf Funktionsstörungen eines Teams"

28) Empathie ist ...

29) Was ist für IT -Spezialisten für die Auswahl eines Stellenangebots wichtig?

30) Warum Menschen Veränderungen widerstehen (von Siobhán McHale)

31) Wie regulieren Sie Ihre Emotionen? (von Nawal Mustafa M.A.)

32) 21 Fähigkeiten, die Sie für immer bezahlen (von Jeremiah Teo / 赵汉昇)

33) Echte Freiheit ist ...

34) 12 Möglichkeiten, Vertrauen mit anderen aufzubauen (von Justin Wright)

35) Merkmale eines talentierten Mitarbeiters (vom Talent Management Institute)

36) 10 Schlüssel, um Ihr Team zu motivieren


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Ängste

Land
Sprache
-
Mail
Neu berechnen
Kritischer Wert des Korrelationskoeffizienten
Normalverteilung, von William Sealy Gosset (Student) r = 0.0353
Normalverteilung, von William Sealy Gosset (Student) r = 0.0353
Nicht -Normalverteilung durch Spearman r = 0.0014
VerteilungNon
normal
NormalNon
normal
NormalNormalNormalNormalNormal
Alle Fragen
Alle Fragen
Meine größte Angst ist
Meine größte Angst ist
Answer 1-
Schwach positiv
0.0297
Schwach positiv
0.0298
Schwach negativ
-0.0106
Schwach positiv
0.0970
Schwach positiv
0.0325
Schwach negativ
-0.0019
Schwach negativ
-0.1558
Answer 2-
Schwach positiv
0.0188
Schwach positiv
0.0076
Schwach negativ
-0.0360
Schwach positiv
0.0711
Schwach positiv
0.0387
Schwach positiv
0.0082
Schwach negativ
-0.1011
Answer 3-
Schwach positiv
0.0026
Schwach negativ
-0.0170
Schwach negativ
-0.0443
Schwach negativ
-0.0458
Schwach positiv
0.0547
Schwach positiv
0.0808
Schwach negativ
-0.0270
Answer 4-
Schwach positiv
0.0332
Schwach positiv
0.0285
Schwach negativ
-0.0006
Schwach positiv
0.0155
Schwach positiv
0.0276
Schwach positiv
0.0105
Schwach negativ
-0.0917
Answer 5-
Schwach positiv
0.0122
Schwach positiv
0.1193
Schwach positiv
0.0095
Schwach positiv
0.0721
Schwach positiv
0.0057
Schwach negativ
-0.0083
Schwach negativ
-0.1687
Answer 6-
Schwach positiv
0.0044
Schwach positiv
0.0005
Schwach negativ
-0.0582
Schwach negativ
-0.0004
Schwach positiv
0.0210
Schwach positiv
0.0830
Schwach negativ
-0.0418
Answer 7-
Schwach positiv
0.0242
Schwach positiv
0.0368
Schwach negativ
-0.0521
Schwach negativ
-0.0234
Schwach positiv
0.0403
Schwach positiv
0.0568
Schwach negativ
-0.0597
Answer 8-
Schwach positiv
0.0707
Schwach positiv
0.0781
Schwach negativ
-0.0244
Schwach positiv
0.0140
Schwach positiv
0.0303
Schwach positiv
0.0137
Schwach negativ
-0.1334
Answer 9-
Schwach positiv
0.0564
Schwach positiv
0.1531
Schwach positiv
0.0127
Schwach positiv
0.0769
Schwach negativ
-0.0136
Schwach negativ
-0.0495
Schwach negativ
-0.1752
Answer 10-
Schwach positiv
0.0711
Schwach positiv
0.0700
Schwach negativ
-0.0127
Schwach positiv
0.0246
Schwach positiv
0.0363
Schwach negativ
-0.0156
Schwach negativ
-0.1273
Answer 11-
Schwach positiv
0.0542
Schwach positiv
0.0488
Schwach positiv
0.0086
Schwach positiv
0.0078
Schwach positiv
0.0162
Schwach positiv
0.0315
Schwach negativ
-0.1248
Answer 12-
Schwach positiv
0.0281
Schwach positiv
0.0929
Schwach negativ
-0.0325
Schwach positiv
0.0361
Schwach positiv
0.0276
Schwach positiv
0.0365
Schwach negativ
-0.1482
Answer 13-
Schwach positiv
0.0643
Schwach positiv
0.0916
Schwach negativ
-0.0418
Schwach positiv
0.0237
Schwach positiv
0.0425
Schwach positiv
0.0239
Schwach negativ
-0.1558
Answer 14-
Schwach positiv
0.0697
Schwach positiv
0.1017
Schwach positiv
0.0149
Schwach negativ
-0.0062
Schwach negativ
-0.0087
Schwach negativ
-0.0002
Schwach negativ
-0.1161
Answer 15-
Schwach positiv
0.0603
Schwach positiv
0.1299
Schwach negativ
-0.0379
Schwach positiv
0.0163
Schwach negativ
-0.0091
Schwach positiv
0.0164
Schwach negativ
-0.1204
Answer 16-
Schwach positiv
0.0691
Schwach positiv
0.0221
Schwach negativ
-0.0305
Schwach negativ
-0.0515
Schwach positiv
0.0750
Schwach positiv
0.0187
Schwach negativ
-0.0696


Export nach MS Excel
Diese Funktionalität ist in Ihren eigenen VUCA-Umfragen verfügbar
OK

You can not only just create your poll in the Tarif «V.U.C.A Umfrage Designer» (with a unique link and your logo) but also you can earn money by selling its results in the Tarif «Umfrageshop», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarif «Meine SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produktbesitzer SaaS Pet Project SDest®

Valerii war 1993 als Sozialpädagoge-Psychologe qualifiziert und hat seitdem sein Wissen im Projektmanagement angewendet.
Valerii erhielt 2013 einen Master -Abschluss und die Qualifikation für Projekt- und Programmmanager. Während seines Master -Programms wurde er mit Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) und Spiraldynamik vertraut.
Valerii absolvierte verschiedene Spiraldynamik -Tests und nutzte sein Wissen und seine Erfahrung, um die aktuelle Version von Sdest anzupassen.
Valerii ist der Autor der Untersuchung der Unsicherheit des V.U.C.A. Konzept unter Verwendung der Spiraldynamik und mathematischen Statistiken in der Psychologie, mehr als 20 internationale Umfragen.
Dieser Beitrag hat 0 Kommentare
Antwort an
Eine Antwort stornieren
Hinterlasse ein Kommentar
×
SIE FINDEN EINEN FEHLER
Schlagen Sie Ihre richtige Version vor
Geben Sie Ihre E-Mail-Adresse wie gewünscht ein
Senden
Stornieren
Bot
sdtest
1
Hi! Lassen Sie mich Sie fragen, vertraut Sie bereits mit Spiraldynamik?