Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) په تیره میاشت کې د پرسونل په تړاو د شرکتونو عمل (هو / نه)

2) په تیره میاشت کې د پرسونل په تړاو د شرکتونو عمل (حقیقت په٪)

3) ویره

4) زما د هیواد په وړاندې ترټولو لوی مشکلات

5) کوم خصوصیات او وړتیاوې د بریالي ټیمونو جوړولو پر مهال ښه مشران کاروي؟

6) Google. فاکتورونه چې د ټیم EFFINT باندې تاثیر کوي

7) د دندو لټون کونکو اصلي لومړیتوبونه

8) کوم شی یو عالي مشر رامینځته کوي؟

9) څه خلک په کار کې بریالي کوي؟

10) ایا تاسو چمتو یاست چې د لرې ځای لپاره لږ معاش ترلاسه کړئ؟

11) ایا اتمال شتون لري؟

12) عظایف په مسلک کې

13) په ژوند کې اجتماعده

14) د عذاب لاملونه

15) لاملونه ولې خلک پریږدي (د انا حیاتي لخوا)

16) باور (#WVS)

17) د اکسفورډ خوښۍ سروې

18) رواني هوساینې

19) ستاسو راتلونکی په زړه پوری فرصت دی؟

20) تاسو به پدې اونۍ کې د خپل رواني روغتیا څارلو لپاره څه وکړئ؟

21) زه د خپل تیر، اوسني یا راتلونکي په اړه فکر کوم

22) متبادیکسیس

23) مصنوعي استخبارات او د تمدن پای

24) ولې خلک تراوسه اعلان کوي؟

25) د ځان باور په جوړولو کې د جنډر توپیر (که IFDINDINBCH)

26) د Xing.com کلتور ارزونه

27) پیټریک لنسي "د ټیم پنځه تخریبونه"

28) خواخوږي ده ...

29) د دندې وړاندیز غوره کولو کې د دې متخصصینو لپاره لازمي دي؟

30) ولې خلک د شعاع په وړاندې مقاومت کوي (د سیوبحین مچیل لخوا)

31) تاسو خپل احساسات څنګه تنظیم کوئ؟ (د نوال مصطفی م.

32) 21 مهارتونه چې تاسو ته د تل لپاره تادیه کوي (د Jeamiiah teo/ 赵汉昇)

33) ریښتینی ازادي ...

34) د نورو سره د باور جوړولو 12 لارې (په جسټین راویت)

35) د تکړه کارمند ځانګړتیاوې (د استعداد مدیریت انستیتوت)

36) ستاسو د ټیم هڅولو لپاره 10 کلي


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

ویره

د هېواد
ژبه
-
Mail
اصلاحات
د ارتباط ضريب مهمو ارزښت
نورمال ویش، د ولیم سمندري ګوسټ (زده کونکي) لخوا r = 0.0353
نورمال ویش، د ولیم سمندري ګوسټ (زده کونکي) لخوا r = 0.0353
غیر نورمال توزیع، د سپرمان لخوا r = 0.0014
ویشغیر
نورمال
نورمالغیر
نورمال
نورمالنورمالنورمالنورمالنورمال
ټولې پوښتنې
ټولې پوښتنې
زما ترټولو لوی ویره ده
زما ترټولو لوی ویره ده
Answer 1-
کمزوری مثبت
0.0297
کمزوری مثبت
0.0298
کمزوری منفي
-0.0106
کمزوری مثبت
0.0970
کمزوری مثبت
0.0325
کمزوری منفي
-0.0019
کمزوری منفي
-0.1558
Answer 2-
کمزوری مثبت
0.0188
کمزوری مثبت
0.0076
کمزوری منفي
-0.0360
کمزوری مثبت
0.0711
کمزوری مثبت
0.0387
کمزوری مثبت
0.0082
کمزوری منفي
-0.1011
Answer 3-
کمزوری مثبت
0.0026
کمزوری منفي
-0.0170
کمزوری منفي
-0.0443
کمزوری منفي
-0.0458
کمزوری مثبت
0.0547
کمزوری مثبت
0.0808
کمزوری منفي
-0.0270
Answer 4-
کمزوری مثبت
0.0332
کمزوری مثبت
0.0285
کمزوری منفي
-0.0006
کمزوری مثبت
0.0155
کمزوری مثبت
0.0276
کمزوری مثبت
0.0105
کمزوری منفي
-0.0917
Answer 5-
کمزوری مثبت
0.0122
کمزوری مثبت
0.1193
کمزوری مثبت
0.0095
کمزوری مثبت
0.0721
کمزوری مثبت
0.0057
کمزوری منفي
-0.0083
کمزوری منفي
-0.1687
Answer 6-
کمزوری مثبت
0.0044
کمزوری مثبت
0.0005
کمزوری منفي
-0.0582
کمزوری منفي
-0.0004
کمزوری مثبت
0.0210
کمزوری مثبت
0.0830
کمزوری منفي
-0.0418
Answer 7-
کمزوری مثبت
0.0242
کمزوری مثبت
0.0368
کمزوری منفي
-0.0521
کمزوری منفي
-0.0234
کمزوری مثبت
0.0403
کمزوری مثبت
0.0568
کمزوری منفي
-0.0597
Answer 8-
کمزوری مثبت
0.0707
کمزوری مثبت
0.0781
کمزوری منفي
-0.0244
کمزوری مثبت
0.0140
کمزوری مثبت
0.0303
کمزوری مثبت
0.0137
کمزوری منفي
-0.1334
Answer 9-
کمزوری مثبت
0.0564
کمزوری مثبت
0.1531
کمزوری مثبت
0.0127
کمزوری مثبت
0.0769
کمزوری منفي
-0.0136
کمزوری منفي
-0.0495
کمزوری منفي
-0.1752
Answer 10-
کمزوری مثبت
0.0711
کمزوری مثبت
0.0700
کمزوری منفي
-0.0127
کمزوری مثبت
0.0246
کمزوری مثبت
0.0363
کمزوری منفي
-0.0156
کمزوری منفي
-0.1273
Answer 11-
کمزوری مثبت
0.0542
کمزوری مثبت
0.0488
کمزوری مثبت
0.0086
کمزوری مثبت
0.0078
کمزوری مثبت
0.0162
کمزوری مثبت
0.0315
کمزوری منفي
-0.1248
Answer 12-
کمزوری مثبت
0.0281
کمزوری مثبت
0.0929
کمزوری منفي
-0.0325
کمزوری مثبت
0.0361
کمزوری مثبت
0.0276
کمزوری مثبت
0.0365
کمزوری منفي
-0.1482
Answer 13-
کمزوری مثبت
0.0643
کمزوری مثبت
0.0916
کمزوری منفي
-0.0418
کمزوری مثبت
0.0237
کمزوری مثبت
0.0425
کمزوری مثبت
0.0239
کمزوری منفي
-0.1558
Answer 14-
کمزوری مثبت
0.0697
کمزوری مثبت
0.1017
کمزوری مثبت
0.0149
کمزوری منفي
-0.0062
کمزوری منفي
-0.0087
کمزوری منفي
-0.0002
کمزوری منفي
-0.1161
Answer 15-
کمزوری مثبت
0.0603
کمزوری مثبت
0.1299
کمزوری منفي
-0.0379
کمزوری مثبت
0.0163
کمزوری منفي
-0.0091
کمزوری مثبت
0.0164
کمزوری منفي
-0.1204
Answer 16-
کمزوری مثبت
0.0691
کمزوری مثبت
0.0221
کمزوری منفي
-0.0305
کمزوری منفي
-0.0515
کمزوری مثبت
0.0750
کمزوری مثبت
0.0187
کمزوری منفي
-0.0696


د MS اکسیل د صادراتو
دا فعالیت به ستاسو په خپل VUCA ټولپوښتنو کې شتون ولري
سمه ده

You can not only just create your poll in the د تعرفې «V.U.C.A د ټاکنو طراح» (with a unique link and your logo) but also you can earn money by selling its results in the د تعرفې «د ټولپوښتنې هټۍ», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing د تعرفې «زما SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
ویلرای کوسنکو
د محصول مالک ساس پالتو پروژه SDTyst®

والیري په 1993 کې د ټولنیز وزګارو - ارواپوه په توګه وړ و او وروسته له هغه چې د هغې پوهه د پروژې مدیریت کې یې کړې.
ویلريي په 2013 کې د ماسټرۍ سند او د پروژې او برنامې مدیر قابلیت ترلاسه کړ.
والرایی مختلف سپوږمۍ متحرک ازموینې اخیستي او د هغې پوهه او تجربه یې وکاروله ترڅو د sdteect اوسنی نسخه تنظیم کړي.
ویلريای د V.u.c.a د ناڅرګندتیا سپرونکي لیکوال دی. په اروائل کې د سپیررال متحرک او ریاضیاتو احصایو په کارولو سره په اروا پوهنې کې مفهوم، له 20 څخه ډیر نړیوال رایې.
دا پوسټ لري 0 نظرونه
ته ځواب ورکړئ
ځواب لغوه کړه
خپله نظر پرېږدئ
×
تاسو An error موندل
ستاسو په صحيح نسخه وړاندیز
ستاسو د برېښليک وليکئ په توګه د خوښې وړ
Send
لغوه
Bot
sdtest
1
پخیر! اجازه راکړئ تاسو څخه وپوښتم، ایا تاسو دمخه د سپک متحرک سره اشنا یاست؟