Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Ações das empresas em relação ao pessoal no último mês (sim / não)

2) Ações de empresas em relação ao pessoal no último mês (fato em%)

3) Medos

4) Maiores problemas enfrentados pelo meu país

5) Quais qualidades e habilidades os bons líderes usam ao criar equipes de sucesso?

6) Google. Fatores que afetam a eficácia da equipe

7) As principais prioridades dos candidatos a emprego

8) O que faz de um chefe um grande líder?

9) O que faz as pessoas bem -sucedidas no trabalho?

10) Você está pronto para receber menos pagamento para trabalhar remotamente?

11) O envelhecimento existe?

12) Envelhecimento na carreira

13) Envelhecimento na vida

14) Causas do envelhecimento

15) Razões pelas quais as pessoas desistem (de Anna Vital)

16) CONFIAR EM (#WVS)

17) Pesquisa de Felicidade de Oxford

18) Bem -estar psicológico

19) Onde seria sua próxima oportunidade mais emocionante?

20) O que você fará esta semana para cuidar de sua saúde mental?

21) Eu vivo pensando no meu passado, presente ou futuro

22) Meritocracia

23) Inteligência artificial e o fim da civilização

24) Por que as pessoas procrastinam?

25) Diferença de gênero na construção da autoconfiança (Ifd Allensbach)

26) Xing.com avaliação da cultura

27) Patrick Lencioni "As Cinco Disfunções de uma equipe"

28) Empatia é ...

29) O que é essencial para os especialistas em TI na escolha de uma oferta de emprego?

30) Por que as pessoas resistem à mudança (por Siobhán McHale)

31) Como você regular suas emoções? (Por Nawal Mustafa M.A.)

32) 21 Habilidades que pagam para sempre (por Jeremiah Teo / 赵汉昇)

33) A verdadeira liberdade é ...

34) 12 maneiras de construir confiança com outras pessoas (de Justin Wright)

35) Características de um funcionário talentoso (pelo Instituto de Gerenciamento de Talentos)

36) 10 chaves para motivar sua equipe


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Medos

País
Língua
-
Mail
Recalcular
O valor crítico do coeficiente de correlação
Distribuição normal, de William Sealy Gosset (aluno) r = 0.0353
Distribuição normal, de William Sealy Gosset (aluno) r = 0.0353
Distribuição não normal, por Spearman r = 0.0014
DistribuiçãoNão
normal
NormalNão
normal
NormalNormalNormalNormalNormal
Todas as perguntas
Todas as perguntas
Meu maior medo é
Meu maior medo é
Answer 1-
Fraco positivo
0.0297
Fraco positivo
0.0298
Negativo fraco
-0.0106
Fraco positivo
0.0970
Fraco positivo
0.0325
Negativo fraco
-0.0019
Negativo fraco
-0.1558
Answer 2-
Fraco positivo
0.0188
Fraco positivo
0.0076
Negativo fraco
-0.0360
Fraco positivo
0.0711
Fraco positivo
0.0387
Fraco positivo
0.0082
Negativo fraco
-0.1011
Answer 3-
Fraco positivo
0.0026
Negativo fraco
-0.0170
Negativo fraco
-0.0443
Negativo fraco
-0.0458
Fraco positivo
0.0547
Fraco positivo
0.0808
Negativo fraco
-0.0270
Answer 4-
Fraco positivo
0.0332
Fraco positivo
0.0285
Negativo fraco
-0.0006
Fraco positivo
0.0155
Fraco positivo
0.0276
Fraco positivo
0.0105
Negativo fraco
-0.0917
Answer 5-
Fraco positivo
0.0122
Fraco positivo
0.1193
Fraco positivo
0.0095
Fraco positivo
0.0721
Fraco positivo
0.0057
Negativo fraco
-0.0083
Negativo fraco
-0.1687
Answer 6-
Fraco positivo
0.0044
Fraco positivo
0.0005
Negativo fraco
-0.0582
Negativo fraco
-0.0004
Fraco positivo
0.0210
Fraco positivo
0.0830
Negativo fraco
-0.0418
Answer 7-
Fraco positivo
0.0242
Fraco positivo
0.0368
Negativo fraco
-0.0521
Negativo fraco
-0.0234
Fraco positivo
0.0403
Fraco positivo
0.0568
Negativo fraco
-0.0597
Answer 8-
Fraco positivo
0.0707
Fraco positivo
0.0781
Negativo fraco
-0.0244
Fraco positivo
0.0140
Fraco positivo
0.0303
Fraco positivo
0.0137
Negativo fraco
-0.1334
Answer 9-
Fraco positivo
0.0564
Fraco positivo
0.1531
Fraco positivo
0.0127
Fraco positivo
0.0769
Negativo fraco
-0.0136
Negativo fraco
-0.0495
Negativo fraco
-0.1752
Answer 10-
Fraco positivo
0.0711
Fraco positivo
0.0700
Negativo fraco
-0.0127
Fraco positivo
0.0246
Fraco positivo
0.0363
Negativo fraco
-0.0156
Negativo fraco
-0.1273
Answer 11-
Fraco positivo
0.0542
Fraco positivo
0.0488
Fraco positivo
0.0086
Fraco positivo
0.0078
Fraco positivo
0.0162
Fraco positivo
0.0315
Negativo fraco
-0.1248
Answer 12-
Fraco positivo
0.0281
Fraco positivo
0.0929
Negativo fraco
-0.0325
Fraco positivo
0.0361
Fraco positivo
0.0276
Fraco positivo
0.0365
Negativo fraco
-0.1482
Answer 13-
Fraco positivo
0.0643
Fraco positivo
0.0916
Negativo fraco
-0.0418
Fraco positivo
0.0237
Fraco positivo
0.0425
Fraco positivo
0.0239
Negativo fraco
-0.1558
Answer 14-
Fraco positivo
0.0697
Fraco positivo
0.1017
Fraco positivo
0.0149
Negativo fraco
-0.0062
Negativo fraco
-0.0087
Negativo fraco
-0.0002
Negativo fraco
-0.1161
Answer 15-
Fraco positivo
0.0603
Fraco positivo
0.1299
Negativo fraco
-0.0379
Fraco positivo
0.0163
Negativo fraco
-0.0091
Fraco positivo
0.0164
Negativo fraco
-0.1204
Answer 16-
Fraco positivo
0.0691
Fraco positivo
0.0221
Negativo fraco
-0.0305
Negativo fraco
-0.0515
Fraco positivo
0.0750
Fraco positivo
0.0187
Negativo fraco
-0.0696


Exportação para o MS Excel
Esta funcionalidade estará disponível em suas próprias pesquisas VUCA
OK

You can not only just create your poll in the tarifa «V.U.C.A designer de pesquisa» (with a unique link and your logo) but also you can earn money by selling its results in the tarifa «Loja de pesquisas», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifa «Meu SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Proprietário do produto SaaS Pet Project Sdtest®

Valerii foi qualificado como psicólogo social de pedagogo em 1993 e, desde então, aplicou seu conhecimento em gerenciamento de projetos.
Valerii obteve um mestrado e a qualificação do gerente do projeto e do programa em 2013. Durante o programa de mestrado, ele se familiarizou com o Roteiro do Projeto (GPM Deutsche Gesellschaft für projektmanagement e. V.) e dinâmica em espiral.
Valerii fez vários testes de dinâmica em espiral e usou seu conhecimento e experiência para adaptar a versão atual do SDTEST.
Valerii é o autor de explorar a incerteza do V.U.C.A. Conceito usando dinâmica espiral e estatística matemática em psicologia, mais de 20 pesquisas internacionais.
Este post tem 0 Comentários
Responder a
Cancelar uma resposta
Deixe o seu comentário
×
Você encontrar um erro
Propor o seu CORRETO VERSÃO
Digite o seu e-mail como desejado
Enviar
Cancelar
Bot
sdtest
1
Olá! Deixe -me perguntar, você já está familiarizado com a dinâmica espiral?