Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) اقدامات شرکت ها در رابطه با پرسنل در ماه گذشته (بله / خیر)

2) اقدامات شرکت ها در رابطه با پرسنل در ماه گذشته (واقعیت در٪)

3) ترس

4) بزرگترین مشکلات پیش روی کشور من

5) رهبران خوب هنگام ساختن تیم های موفق از چه خصوصیات و توانایی هایی استفاده می کنند؟

6) گوگل. عواملی که بر اثربخشی تیم تأثیر می گذارد

7) اولویت های اصلی افراد متقاضی کار

8) چه چیزی رئیس را به یک رهبر بزرگ تبدیل می کند؟

9) چه چیزی باعث موفقیت افراد در کار می شود؟

10) آیا شما آماده دریافت دستمزد کمتری برای کار از راه دور هستید؟

11) آیا سن گرایی وجود دارد؟

12) سن گرایی در حرفه

13) سن گرایی در زندگی

14) علل سن گرایی

15) دلایلی که مردم تسلیم می شوند (توسط آنا ویتال)

16) اعتماد (#WVS)

17) بررسی خوشبختی آکسفورد

18) سلامت روانی

19) جالب ترین فرصت بعدی شما کجا خواهد بود؟

20) در این هفته چه کاری انجام خواهید داد تا از سلامت روانی خود مراقبت کنید؟

21) من زندگی می کنم در مورد گذشته ، حال یا آینده ام

22) شایسته سالاری

23) هوش مصنوعی و پایان تمدن

24) چرا مردم به تعویق می افتند؟

25) تفاوت جنسیتی در ایجاد اعتماد به نفس (IFD Allensbach)

26) ارزیابی فرهنگ Xing.com

27) پنج اختلال عملکرد یک تیم پاتریک لنسیونی

28) همدلی است ...

29) چه چیزی برای متخصصان فناوری اطلاعات در انتخاب پیشنهاد شغلی ضروری است؟

30) چرا مردم در برابر تغییر مقاومت می کنند (توسط Siobhán Mchale)

31) چگونه احساسات خود را تنظیم می کنید؟ (توسط Nawal Mustafa M.A.)

32) 21 مهارتی که برای همیشه به شما می پردازد (توسط ارمیا Teo / 赵汉昇)

33) آزادی واقعی ...

34) 12 راه برای ایجاد اعتماد با دیگران (توسط جاستین رایت)

35) ویژگی های یک کارمند با استعداد (توسط موسسه مدیریت استعداد)

36) 10 کلید برای ایجاد انگیزه در تیم خود


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

ترس

کشور
زبان
-
Mail
دوباره محاسبه کردن
مقدار بحرانی ضریب همبستگی
توزیع عادی ، توسط ویلیام سیلی گوست (دانشجو) r = 0.0353
توزیع عادی ، توسط ویلیام سیلی گوست (دانشجو) r = 0.0353
توزیع غیر عادی ، توسط Spearman r = 0.0014
توزیعغیر
عادی
طبیعیغیر
عادی
طبیعیطبیعیطبیعیطبیعیطبیعی
تمام س questions الات
تمام س questions الات
بزرگترین ترس من این است
بزرگترین ترس من این است
Answer 1-
مثبت ضعیف
0.0297
مثبت ضعیف
0.0298
منفی ضعیف
-0.0106
مثبت ضعیف
0.0970
مثبت ضعیف
0.0325
منفی ضعیف
-0.0019
منفی ضعیف
-0.1558
Answer 2-
مثبت ضعیف
0.0188
مثبت ضعیف
0.0076
منفی ضعیف
-0.0360
مثبت ضعیف
0.0711
مثبت ضعیف
0.0387
مثبت ضعیف
0.0082
منفی ضعیف
-0.1011
Answer 3-
مثبت ضعیف
0.0026
منفی ضعیف
-0.0170
منفی ضعیف
-0.0443
منفی ضعیف
-0.0458
مثبت ضعیف
0.0547
مثبت ضعیف
0.0808
منفی ضعیف
-0.0270
Answer 4-
مثبت ضعیف
0.0332
مثبت ضعیف
0.0285
منفی ضعیف
-0.0006
مثبت ضعیف
0.0155
مثبت ضعیف
0.0276
مثبت ضعیف
0.0105
منفی ضعیف
-0.0917
Answer 5-
مثبت ضعیف
0.0122
مثبت ضعیف
0.1193
مثبت ضعیف
0.0095
مثبت ضعیف
0.0721
مثبت ضعیف
0.0057
منفی ضعیف
-0.0083
منفی ضعیف
-0.1687
Answer 6-
مثبت ضعیف
0.0044
مثبت ضعیف
0.0005
منفی ضعیف
-0.0582
منفی ضعیف
-0.0004
مثبت ضعیف
0.0210
مثبت ضعیف
0.0830
منفی ضعیف
-0.0418
Answer 7-
مثبت ضعیف
0.0242
مثبت ضعیف
0.0368
منفی ضعیف
-0.0521
منفی ضعیف
-0.0234
مثبت ضعیف
0.0403
مثبت ضعیف
0.0568
منفی ضعیف
-0.0597
Answer 8-
مثبت ضعیف
0.0707
مثبت ضعیف
0.0781
منفی ضعیف
-0.0244
مثبت ضعیف
0.0140
مثبت ضعیف
0.0303
مثبت ضعیف
0.0137
منفی ضعیف
-0.1334
Answer 9-
مثبت ضعیف
0.0564
مثبت ضعیف
0.1531
مثبت ضعیف
0.0127
مثبت ضعیف
0.0769
منفی ضعیف
-0.0136
منفی ضعیف
-0.0495
منفی ضعیف
-0.1752
Answer 10-
مثبت ضعیف
0.0711
مثبت ضعیف
0.0700
منفی ضعیف
-0.0127
مثبت ضعیف
0.0246
مثبت ضعیف
0.0363
منفی ضعیف
-0.0156
منفی ضعیف
-0.1273
Answer 11-
مثبت ضعیف
0.0542
مثبت ضعیف
0.0488
مثبت ضعیف
0.0086
مثبت ضعیف
0.0078
مثبت ضعیف
0.0162
مثبت ضعیف
0.0315
منفی ضعیف
-0.1248
Answer 12-
مثبت ضعیف
0.0281
مثبت ضعیف
0.0929
منفی ضعیف
-0.0325
مثبت ضعیف
0.0361
مثبت ضعیف
0.0276
مثبت ضعیف
0.0365
منفی ضعیف
-0.1482
Answer 13-
مثبت ضعیف
0.0643
مثبت ضعیف
0.0916
منفی ضعیف
-0.0418
مثبت ضعیف
0.0237
مثبت ضعیف
0.0425
مثبت ضعیف
0.0239
منفی ضعیف
-0.1558
Answer 14-
مثبت ضعیف
0.0697
مثبت ضعیف
0.1017
مثبت ضعیف
0.0149
منفی ضعیف
-0.0062
منفی ضعیف
-0.0087
منفی ضعیف
-0.0002
منفی ضعیف
-0.1161
Answer 15-
مثبت ضعیف
0.0603
مثبت ضعیف
0.1299
منفی ضعیف
-0.0379
مثبت ضعیف
0.0163
منفی ضعیف
-0.0091
مثبت ضعیف
0.0164
منفی ضعیف
-0.1204
Answer 16-
مثبت ضعیف
0.0691
مثبت ضعیف
0.0221
منفی ضعیف
-0.0305
منفی ضعیف
-0.0515
مثبت ضعیف
0.0750
مثبت ضعیف
0.0187
منفی ضعیف
-0.0696


صادرات به اکسل
این قابلیت در نظرسنجی های VUCA شما در دسترس خواهد بود
خوب

You can not only just create your poll in the تعرفه «V.U.C.A طراح نظرسنجی» (with a unique link and your logo) but also you can earn money by selling its results in the تعرفه «فروشگاه نظرسنجی», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing تعرفه «من SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
والری
صاحب محصول SaaS Pet Project SDTEST®

Valerii در سال 1993 به عنوان یک متخصص دانشکده آموزش و پرورش اجتماعی واجد شرایط بود و از آن زمان دانش خود را در مدیریت پروژه به کار گرفته است.
Valerii در سال 2013 مدرک کارشناسی ارشد و مدافع پروژه و مدیر برنامه را به دست آورد. در طول برنامه کارشناسی ارشد خود ، وی با نقشه راه پروژه (GPM Deutsche Gesellschaft Für Projektmanagement E. V.) و Spiral Dynamics آشنا شد.
والری تست های مختلف دینامیک مارپیچی را انجام داد و از دانش و تجربه خود برای تطبیق نسخه فعلی SDTest استفاده کرد.
Valerii نویسنده کاوش در مورد عدم قطعیت V.U.C.A. مفهوم با استفاده از پویایی مارپیچ و آمار ریاضی در روانشناسی ، بیش از 20 نظرسنجی بین المللی.
این پست دارد 0 نظرات
پاسخ دادن به
پاسخ را لغو کنید
نظر خود را بگذارید
×
شما یک خطا
پیشنهاد نسخه صحیح خود را
ایمیل خود را به عنوان مورد نظر را وارد کنید
ارسال
لغو کردن
Bot
sdtest
1
سلام! بگذارید از شما بپرسم ، آیا قبلاً با دینامیک مارپیچ آشنا هستید؟