Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Fihetsiketsehana orinasa mifandraika amin'ny mpiasam-panjakana amin'ny volana farany (eny / tsia)

2) Fihetsiketsehana orinasa mifandraika amin'ny mpiasam-panjakana amin'ny volana lasa (zava-misy ao%)

3) Tahotra

4) Olana lehibe indrindra atrehin'ny fireneko

5) Inona no toetra sy fahaiza-manao ampiasain'ny mpitarika tsara rehefa manorina ekipa mahomby?

6) Google. Ireo antony izay misy fiantraikany amin'ny fananana ekipa

7) Ny laharam-pahamehan'ny mpitady asa

8) Inona no mahatonga ny tompon'andraikitra ho mpitarika lehibe?

9) Inona no mahatonga ny olona hahomby amin'ny asa?

10) Vonona ve ianao handray karama kely kokoa hiasa lavitra?

11) Misy ny fiantrana ve?

12) AgeM amin'ny sehatry ny asa

13) Ageism amin'ny fiainana

14) Antony ny fiandohan-tena

15) Ny antony mahatonga ny olona ho kivy (nataon'i Anna Vital)

16) fahatokiana (#WVS)

17) Fanadihadiana momba ny Oxford

18) Ny fahasalamana ara-tsaina

19) Aiza ny fotoana mety hampientam-po anao indrindra?

20) Inona no hataonao amin'ity herinandro ity hikarakara ny fahasalamanao ara-tsaina?

21) Miaina mieritreritra ny lasa, ankehitriny na ho avy aho

22) Meritocokracy

23) Ny faharanitan-tsaina voajanahary sy ny fiafaran'ny sivilizasiona

24) Nahoana ny olona no mangataka?

25) Fahasamihafana ny lahy sy ny vavy amin'ny fananganana fahatokisan-tena (IFD allensbach)

26) Xing. Fandinihana ny kolontsaina

27) Patrick Lencioni's "The DysFunctions an'ny ekipa"

28) Ny fiaraha-miory dia ...

29) Inona no tena ilaina amin'ny manam-pahaizana manokana amin'ny fisafidianana ny tolotra amin'ny asa?

30) Maninona ny olona no manohitra ny fanovana (avy amin'i Siobhán Mchale)

31) Ahoana no fomba handraisanao ny fihetseham-ponao? (nataon'i Nawal Mustafa M.a.)

32) Fahaiza-manao 21 izay mandoa anao mandrakizay (nataon'i Jeremia Teo / 赵汉昇)

33) Ny tena fahafahana dia ...

34) Fomba 12 hananganana fahatokisana amin'ny hafa (nataon'i Justin Wright)

35) Toetran'ny mpiasa manan-talenta (avy amin'ny andrim-pitantanana talenta)

36) 10 Fanalahidy hanosika ny ekipanao


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Tahotra

Firenena
fiteny
-
Mail
Recalculate
Critical lanjan'ny ny fifandraisany coefficient
Fizarana ara-dalàna, nataon'i William Sealy Gosset (mpianatra) r = 0.0353
Fizarana ara-dalàna, nataon'i William Sealy Gosset (mpianatra) r = 0.0353
Fizarana tsy mahazatra, avy amin'ny Spearman r = 0.0014
fizaranaNon
normal
ara-dalànaNon
normal
ara-dalànaara-dalànaara-dalànaara-dalànaara-dalàna
Ny fanontaniana rehetra
Ny fanontaniana rehetra
Ny tahotra lehibe indrindra ananako dia
Ny tahotra lehibe indrindra ananako dia
Answer 1-
Malemy tsara
0.0297
Malemy tsara
0.0298
Malemy ratsy
-0.0106
Malemy tsara
0.0970
Malemy tsara
0.0325
Malemy ratsy
-0.0019
Malemy ratsy
-0.1558
Answer 2-
Malemy tsara
0.0188
Malemy tsara
0.0076
Malemy ratsy
-0.0360
Malemy tsara
0.0711
Malemy tsara
0.0387
Malemy tsara
0.0082
Malemy ratsy
-0.1011
Answer 3-
Malemy tsara
0.0026
Malemy ratsy
-0.0170
Malemy ratsy
-0.0443
Malemy ratsy
-0.0458
Malemy tsara
0.0547
Malemy tsara
0.0808
Malemy ratsy
-0.0270
Answer 4-
Malemy tsara
0.0332
Malemy tsara
0.0285
Malemy ratsy
-0.0006
Malemy tsara
0.0155
Malemy tsara
0.0276
Malemy tsara
0.0105
Malemy ratsy
-0.0917
Answer 5-
Malemy tsara
0.0122
Malemy tsara
0.1193
Malemy tsara
0.0095
Malemy tsara
0.0721
Malemy tsara
0.0057
Malemy ratsy
-0.0083
Malemy ratsy
-0.1687
Answer 6-
Malemy tsara
0.0044
Malemy tsara
0.0005
Malemy ratsy
-0.0582
Malemy ratsy
-0.0004
Malemy tsara
0.0210
Malemy tsara
0.0830
Malemy ratsy
-0.0418
Answer 7-
Malemy tsara
0.0242
Malemy tsara
0.0368
Malemy ratsy
-0.0521
Malemy ratsy
-0.0234
Malemy tsara
0.0403
Malemy tsara
0.0568
Malemy ratsy
-0.0597
Answer 8-
Malemy tsara
0.0707
Malemy tsara
0.0781
Malemy ratsy
-0.0244
Malemy tsara
0.0140
Malemy tsara
0.0303
Malemy tsara
0.0137
Malemy ratsy
-0.1334
Answer 9-
Malemy tsara
0.0564
Malemy tsara
0.1531
Malemy tsara
0.0127
Malemy tsara
0.0769
Malemy ratsy
-0.0136
Malemy ratsy
-0.0495
Malemy ratsy
-0.1752
Answer 10-
Malemy tsara
0.0711
Malemy tsara
0.0700
Malemy ratsy
-0.0127
Malemy tsara
0.0246
Malemy tsara
0.0363
Malemy ratsy
-0.0156
Malemy ratsy
-0.1273
Answer 11-
Malemy tsara
0.0542
Malemy tsara
0.0488
Malemy tsara
0.0086
Malemy tsara
0.0078
Malemy tsara
0.0162
Malemy tsara
0.0315
Malemy ratsy
-0.1248
Answer 12-
Malemy tsara
0.0281
Malemy tsara
0.0929
Malemy ratsy
-0.0325
Malemy tsara
0.0361
Malemy tsara
0.0276
Malemy tsara
0.0365
Malemy ratsy
-0.1482
Answer 13-
Malemy tsara
0.0643
Malemy tsara
0.0916
Malemy ratsy
-0.0418
Malemy tsara
0.0237
Malemy tsara
0.0425
Malemy tsara
0.0239
Malemy ratsy
-0.1558
Answer 14-
Malemy tsara
0.0697
Malemy tsara
0.1017
Malemy tsara
0.0149
Malemy ratsy
-0.0062
Malemy ratsy
-0.0087
Malemy ratsy
-0.0002
Malemy ratsy
-0.1161
Answer 15-
Malemy tsara
0.0603
Malemy tsara
0.1299
Malemy ratsy
-0.0379
Malemy tsara
0.0163
Malemy ratsy
-0.0091
Malemy tsara
0.0164
Malemy ratsy
-0.1204
Answer 16-
Malemy tsara
0.0691
Malemy tsara
0.0221
Malemy ratsy
-0.0305
Malemy ratsy
-0.0515
Malemy tsara
0.0750
Malemy tsara
0.0187
Malemy ratsy
-0.0696


MS Excel ho Export
Ity fampiasa ity dia ho hita ao amin'ny biraom-pifidianana VUCA manokana
Ok

You can not only just create your poll in the Tariff «V.U.C.A fitsapan-kevitra endrika» (with a unique link and your logo) but also you can earn money by selling its results in the Tariff «Poll Shop», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tariff «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Product tompon'ny biby fiompy SDTest®

Valerii dia nahafeno fepetra ho praiminisim-peo ara-tsosialy-psikolojia tamin'ny 1993 ary nanomboka nampihatra ny fahalalany tamin'ny fitantanana ny tetikasa.
Nahazo mari-pahaizana master sy ny mari-pahaizana momba ny tetikasa sy ny programa tamin'ny taona 2013. Nandritra ny fandaharan'asan'ny tompony, dia nanjary zatra tamin'ny tondrozotra tetikasa izy (GPM Deutsche Gesellschafmaft Für Projektmanagement e. V.) sy ny dinamika.
Nandray ny fitsapana dinamika isan-karazany i Valerii ary nampiasa ny fahalalany sy niainany mba hampifanaraka ny dikan-teny SDTT amin'izao fotoana izao.
Valerii no mpanoratra ny mikaroka ny tsy fahazoana antoka ny V.u.c.a. Hevitra momba ny fampiasana dinamika sy antontan'isa matematika ao amin'ny psikolojia, fitsapan-kevitra iraisam-pirenena 20 mahery.
Ity lahatsoratra ity dia manana 0 Comments
Mamaly
Hanafoana ny valiny
Avelao ny hevitrao
×
HITANAO AN ERROR
Soso-kevitra NY Hanitsy ny VERSION
Ampidiro ny e-mail toy ny tiana
Send
hanafoana
Bot
sdtest
1
Salama e! Mamelà ahy hanontany anao, efa zatra ny dinamika spiral ve ianao?