Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Azzjonijiet ta 'kumpaniji b'rabta mal-persunal fl-aħħar xahar (iva / le)

2) Azzjonijiet ta 'kumpaniji fir-rigward ta' persunal fl-aħħar xahar (fatt f '%)

3) Biża '

4) L-ikbar problemi li jiffaċċja lil pajjiżi

5) Liema kwalitajiet u abbiltajiet jużaw il-mexxejja tajbin meta jibnu timijiet ta 'suċċess?

6) Google. Fatturi li jolqtu l-effiċjenza tat-tim

7) Il-prijoritajiet ewlenin ta 'dawk li jfittxu impjieg

8) Dak li jagħmel lil imgħallem mexxej kbir?

9) Dak li jagħmel in-nies b'suċċess fuq ix-xogħol?

10) Lest li tirċievi inqas paga biex taħdem mill-bogħod?

11) L-etàżmu jeżisti?

12) Ageism fil-karriera

13) Ageism fil-ħajja

14) Kawżi ta 'l-Ageism

15) Raġunijiet għaliex in-nies jieqfu (minn Anna Vital)

16) Fiduċja (#WVS)

17) Stħarriġ tal-kuntentizza ta 'Oxford

18) Benesseri psikoloġiku

19) Fejn tkun l-iktar opportunità eċċitanti li jmiss tiegħek?

20) X'se tagħmel din il-ġimgħa biex tieħu ħsieb is-saħħa mentali tiegħek?

21) Jien ngħix naħseb dwar il-passat, il-preżent jew il-futur tiegħi

22) Meritokrazija

23) Intelliġenza artifiċjali u t-tmiem taċ-ċiviltà

24) In-nies għaliex jindirizzaw?

25) Differenza bejn is-sessi fil-bini ta 'kunfidenza fihom infushom (IFD Allensbach)

26) Xing.com Valutazzjoni tal-Kultura

27) Patrick Lencioni "Il-Ħames Disfunzjonijiet ta 'Tim"

28) L-empatija hija ...

29) X'inhu essenzjali għall-ispeċjalisti tal-IT fl-għażla ta 'offerta ta' xogħol?

30) Għaliex in-nies jirreżistu l-bidla (minn Siobhán Mchale)

31) Kif tirregola l-emozzjonijiet tiegħek? (minn Nawal Mustafa M.A.)

32) 21 Ħiliet li jħallsu għal dejjem (minn Jeremiah Teo / 赵汉昇)

33) Il-libertà vera hija ...

34) 12-il mod kif tibni fiduċja ma 'oħrajn (minn Justin Wright)

35) Karatteristiċi ta 'impjegat b'talent (mill-Istitut tal-Ġestjoni tat-Talenti)

36) 10 ċwievet biex jimmotivaw lit-tim tiegħek


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Biża '

pajjiż
lingwa
-
Mail
Kkalkula mill-ġdid
Valur kritiku tal-koeffiċjent ta 'korrelazzjoni
Distribuzzjoni Normali, minn William Sealy Gosset (student) r = 0.0353
Distribuzzjoni Normali, minn William Sealy Gosset (student) r = 0.0353
Distribuzzjoni mhux normali, minn Spearman r = 0.0014
DistribuzzjoniMhux
normali
NormaliMhux
normali
NormaliNormaliNormaliNormaliNormali
Il-mistoqsijiet kollha
Il-mistoqsijiet kollha
L-akbar biża 'tiegħi hija
L-akbar biża 'tiegħi hija
Answer 1-
Pożittiv dgħajjef
0.0297
Pożittiv dgħajjef
0.0298
Negattiv dgħajjef
-0.0106
Pożittiv dgħajjef
0.0970
Pożittiv dgħajjef
0.0325
Negattiv dgħajjef
-0.0019
Negattiv dgħajjef
-0.1558
Answer 2-
Pożittiv dgħajjef
0.0188
Pożittiv dgħajjef
0.0076
Negattiv dgħajjef
-0.0360
Pożittiv dgħajjef
0.0711
Pożittiv dgħajjef
0.0387
Pożittiv dgħajjef
0.0082
Negattiv dgħajjef
-0.1011
Answer 3-
Pożittiv dgħajjef
0.0026
Negattiv dgħajjef
-0.0170
Negattiv dgħajjef
-0.0443
Negattiv dgħajjef
-0.0458
Pożittiv dgħajjef
0.0547
Pożittiv dgħajjef
0.0808
Negattiv dgħajjef
-0.0270
Answer 4-
Pożittiv dgħajjef
0.0332
Pożittiv dgħajjef
0.0285
Negattiv dgħajjef
-0.0006
Pożittiv dgħajjef
0.0155
Pożittiv dgħajjef
0.0276
Pożittiv dgħajjef
0.0105
Negattiv dgħajjef
-0.0917
Answer 5-
Pożittiv dgħajjef
0.0122
Pożittiv dgħajjef
0.1193
Pożittiv dgħajjef
0.0095
Pożittiv dgħajjef
0.0721
Pożittiv dgħajjef
0.0057
Negattiv dgħajjef
-0.0083
Negattiv dgħajjef
-0.1687
Answer 6-
Pożittiv dgħajjef
0.0044
Pożittiv dgħajjef
0.0005
Negattiv dgħajjef
-0.0582
Negattiv dgħajjef
-0.0004
Pożittiv dgħajjef
0.0210
Pożittiv dgħajjef
0.0830
Negattiv dgħajjef
-0.0418
Answer 7-
Pożittiv dgħajjef
0.0242
Pożittiv dgħajjef
0.0368
Negattiv dgħajjef
-0.0521
Negattiv dgħajjef
-0.0234
Pożittiv dgħajjef
0.0403
Pożittiv dgħajjef
0.0568
Negattiv dgħajjef
-0.0597
Answer 8-
Pożittiv dgħajjef
0.0707
Pożittiv dgħajjef
0.0781
Negattiv dgħajjef
-0.0244
Pożittiv dgħajjef
0.0140
Pożittiv dgħajjef
0.0303
Pożittiv dgħajjef
0.0137
Negattiv dgħajjef
-0.1334
Answer 9-
Pożittiv dgħajjef
0.0564
Pożittiv dgħajjef
0.1531
Pożittiv dgħajjef
0.0127
Pożittiv dgħajjef
0.0769
Negattiv dgħajjef
-0.0136
Negattiv dgħajjef
-0.0495
Negattiv dgħajjef
-0.1752
Answer 10-
Pożittiv dgħajjef
0.0711
Pożittiv dgħajjef
0.0700
Negattiv dgħajjef
-0.0127
Pożittiv dgħajjef
0.0246
Pożittiv dgħajjef
0.0363
Negattiv dgħajjef
-0.0156
Negattiv dgħajjef
-0.1273
Answer 11-
Pożittiv dgħajjef
0.0542
Pożittiv dgħajjef
0.0488
Pożittiv dgħajjef
0.0086
Pożittiv dgħajjef
0.0078
Pożittiv dgħajjef
0.0162
Pożittiv dgħajjef
0.0315
Negattiv dgħajjef
-0.1248
Answer 12-
Pożittiv dgħajjef
0.0281
Pożittiv dgħajjef
0.0929
Negattiv dgħajjef
-0.0325
Pożittiv dgħajjef
0.0361
Pożittiv dgħajjef
0.0276
Pożittiv dgħajjef
0.0365
Negattiv dgħajjef
-0.1482
Answer 13-
Pożittiv dgħajjef
0.0643
Pożittiv dgħajjef
0.0916
Negattiv dgħajjef
-0.0418
Pożittiv dgħajjef
0.0237
Pożittiv dgħajjef
0.0425
Pożittiv dgħajjef
0.0239
Negattiv dgħajjef
-0.1558
Answer 14-
Pożittiv dgħajjef
0.0697
Pożittiv dgħajjef
0.1017
Pożittiv dgħajjef
0.0149
Negattiv dgħajjef
-0.0062
Negattiv dgħajjef
-0.0087
Negattiv dgħajjef
-0.0002
Negattiv dgħajjef
-0.1161
Answer 15-
Pożittiv dgħajjef
0.0603
Pożittiv dgħajjef
0.1299
Negattiv dgħajjef
-0.0379
Pożittiv dgħajjef
0.0163
Negattiv dgħajjef
-0.0091
Pożittiv dgħajjef
0.0164
Negattiv dgħajjef
-0.1204
Answer 16-
Pożittiv dgħajjef
0.0691
Pożittiv dgħajjef
0.0221
Negattiv dgħajjef
-0.0305
Negattiv dgħajjef
-0.0515
Pożittiv dgħajjef
0.0750
Pożittiv dgħajjef
0.0187
Negattiv dgħajjef
-0.0696


Esportazzjoni lejn MS Excel
Din il-funzjonalità se tkun disponibbli fl-istħarriġ tal-VUCA tiegħek
Kollox sew

You can not only just create your poll in the tariffa «V.U.C.A disinjatur elezzjoni» (with a unique link and your logo) but also you can earn money by selling its results in the tariffa «Ħanut tal-Poll», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tariffa «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Sid tal-Prodott SaaS Pet Project SDTest®

Valerii kien ikkwalifikat bħala pedagoga soċjali-psikologu fl-1993 u minn dakinhar applika l-għarfien tiegħu fil-ġestjoni tal-proġett.
Valerii kiseb il-grad ta 'master u l-kwalifika tal-Proġett u l-Maniġer tal-Programm fl-2013. Matul il-programm tal-kaptan tiegħu, sar familjari mal-pjan direzzjonali tal-proġett (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) u Spiral Dynamics.
Valerii ħa diversi testijiet ta 'dinamika spirali u uża l-għarfien u l-esperjenza tiegħu biex jadatta l-verżjoni attwali ta' SDTest.
Valerii huwa l-awtur tal-esplorazzjoni tal-inċertezza tal-V.U.C.A. Kunċett bl-użu ta 'dinamika spirali u statistika matematika fil-psikoloġija, aktar minn 20 stħarriġ internazzjonali.
Din il-kariga għandha 0 Kummenti
Irrispondi għal
Ikkanċella tweġiba
Ħalli l-kumment tiegħek
×
INTI ISSIB ERROR AN
JIPPROPONI VERŻJONI KORRETT TIEGĦEK
Ikteb l-email tiegħek kif mixtieq
Ibgħat
Ikkanċella
Bot
sdtest
1
Bongu! Ħallini nistaqsik, diġà familjari mad-dinamika spirali?