Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Accions de les empreses en relació amb el personal del darrer mes (sí / no)

2) Accions d'empreses en relació amb el personal en l'últim mes (fet en%)

3) Temors

4) Majors problemes que té el meu país

5) Quines qualitats i habilitats fan servir els bons líders a l’hora de construir equips d’èxit?

6) Google. Factors que afecten l’eficàcia de l’equip

7) Les principals prioritats dels sol·licitants d’ocupació

8) Què fa que un cap sigui un gran líder?

9) Què fa que la gent tingui èxit a la feina?

10) Esteu a punt per rebre menys pagaments per treballar de forma remota?

11) Existeix l’edatisme?

12) Ageisme a la carrera

13) Ageisme a la vida

14) Causes de l’edatisme

15) Raons per les quals la gent es rendeix (per Anna Vital)

16) Confiar (#WVS)

17) Enquesta de felicitat d'Oxford

18) Benestar psicològic

19) On seria la vostra propera oportunitat més emocionant?

20) Què fareu aquesta setmana per tenir cura de la vostra salut mental?

21) Visc pensant en el meu passat, present o futur

22) Meritocràcia

23) Intel·ligència artificial i el final de la civilització

24) Per què la gent es procrastina?

25) Diferència de gènere en la creació de confiança en si mateix (IFD Allensbach)

26) Xing.com Avaluació de la cultura

27) Les cinc disfuncions d'un equip de Patrick Lencioni

28) L’empatia és ...

29) Què és essencial per als especialistes informàtics per triar una oferta de treball?

30) Per què la gent resisteix al canvi (de Siobhán McHale)

31) Com reguleu les vostres emocions? (de Nawal Mustafa M.A.)

32) 21 Habilitats que us paguen per sempre (de Jeremiah Teo / 赵汉昇)

33) La veritable llibertat és ...

34) 12 maneres de crear confiança amb altres (de Justin Wright)

35) Característiques d’un empleat amb talent (de l’Institut de Gestió de Talent)

36) 10 claus per motivar el vostre equip


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Temors

país
Llenguatge
-
Mail
Recalcular
Valor crític de el coeficient de correlació
Distribució normal, de William Sealy Gosset (estudiant) r = 0.0353
Distribució normal, de William Sealy Gosset (estudiant) r = 0.0353
Distribució no normal, per Spearman r = 0.0014
DistribucióNo
normal
NormalNo
normal
NormalNormalNormalNormalNormal
Totes les preguntes
Totes les preguntes
El meu major temor és
El meu major temor és
Answer 1-
Positiva feble
0.0297
Positiva feble
0.0298
Negativa feble
-0.0106
Positiva feble
0.0970
Positiva feble
0.0325
Negativa feble
-0.0019
Negativa feble
-0.1558
Answer 2-
Positiva feble
0.0188
Positiva feble
0.0076
Negativa feble
-0.0360
Positiva feble
0.0711
Positiva feble
0.0387
Positiva feble
0.0082
Negativa feble
-0.1011
Answer 3-
Positiva feble
0.0026
Negativa feble
-0.0170
Negativa feble
-0.0443
Negativa feble
-0.0458
Positiva feble
0.0547
Positiva feble
0.0808
Negativa feble
-0.0270
Answer 4-
Positiva feble
0.0332
Positiva feble
0.0285
Negativa feble
-0.0006
Positiva feble
0.0155
Positiva feble
0.0276
Positiva feble
0.0105
Negativa feble
-0.0917
Answer 5-
Positiva feble
0.0122
Positiva feble
0.1193
Positiva feble
0.0095
Positiva feble
0.0721
Positiva feble
0.0057
Negativa feble
-0.0083
Negativa feble
-0.1687
Answer 6-
Positiva feble
0.0044
Positiva feble
0.0005
Negativa feble
-0.0582
Negativa feble
-0.0004
Positiva feble
0.0210
Positiva feble
0.0830
Negativa feble
-0.0418
Answer 7-
Positiva feble
0.0242
Positiva feble
0.0368
Negativa feble
-0.0521
Negativa feble
-0.0234
Positiva feble
0.0403
Positiva feble
0.0568
Negativa feble
-0.0597
Answer 8-
Positiva feble
0.0707
Positiva feble
0.0781
Negativa feble
-0.0244
Positiva feble
0.0140
Positiva feble
0.0303
Positiva feble
0.0137
Negativa feble
-0.1334
Answer 9-
Positiva feble
0.0564
Positiva feble
0.1531
Positiva feble
0.0127
Positiva feble
0.0769
Negativa feble
-0.0136
Negativa feble
-0.0495
Negativa feble
-0.1752
Answer 10-
Positiva feble
0.0711
Positiva feble
0.0700
Negativa feble
-0.0127
Positiva feble
0.0246
Positiva feble
0.0363
Negativa feble
-0.0156
Negativa feble
-0.1273
Answer 11-
Positiva feble
0.0542
Positiva feble
0.0488
Positiva feble
0.0086
Positiva feble
0.0078
Positiva feble
0.0162
Positiva feble
0.0315
Negativa feble
-0.1248
Answer 12-
Positiva feble
0.0281
Positiva feble
0.0929
Negativa feble
-0.0325
Positiva feble
0.0361
Positiva feble
0.0276
Positiva feble
0.0365
Negativa feble
-0.1482
Answer 13-
Positiva feble
0.0643
Positiva feble
0.0916
Negativa feble
-0.0418
Positiva feble
0.0237
Positiva feble
0.0425
Positiva feble
0.0239
Negativa feble
-0.1558
Answer 14-
Positiva feble
0.0697
Positiva feble
0.1017
Positiva feble
0.0149
Negativa feble
-0.0062
Negativa feble
-0.0087
Negativa feble
-0.0002
Negativa feble
-0.1161
Answer 15-
Positiva feble
0.0603
Positiva feble
0.1299
Negativa feble
-0.0379
Positiva feble
0.0163
Negativa feble
-0.0091
Positiva feble
0.0164
Negativa feble
-0.1204
Answer 16-
Positiva feble
0.0691
Positiva feble
0.0221
Negativa feble
-0.0305
Negativa feble
-0.0515
Positiva feble
0.0750
Positiva feble
0.0187
Negativa feble
-0.0696


Exportació a MS Excel
Aquesta funcionalitat estarà disponible a les vostres pròpies enquestes VUCA
D'acord

You can not only just create your poll in the tarifa «V.U.C.A dissenyador de sondeig» (with a unique link and your logo) but also you can earn money by selling its results in the tarifa «Sondeig», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifa «El meu SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Propietari del producte Saas Pet Project Sdtest®

Valerii va ser qualificat com a pedagogo-psicòleg social el 1993 i des de llavors ha aplicat els seus coneixements en la gestió de projectes.
Valerii va obtenir un màster i la qualificació de projectes i gestors de programes el 2013. Durant el programa de màster, es va familiaritzar amb el full de ruta del projecte (GPM Deutsche Gesellschaft Für ProjektManagement e. V.) i Spiral Dynamics.
Valerii va fer diverses proves de dinàmica en espiral i va utilitzar els seus coneixements i experiència per adaptar la versió actual de SDTEST.
Valerii és l’autor d’explorar la incertesa de la V.U.C.A. Concepte que utilitza dinàmica en espiral i estadístiques matemàtiques en psicologia, més de 20 enquestes internacionals.
Aquest post té 0 Comentaris
Respondre a
Cancel·la una resposta
Deixa el teu comentari
×
Vostè troba un error
Proposar les seves CORRECTE VERSIÓ
Introduïu la vostra adreça de correu segons es desitgi
Enviar
Cancel · lar
Bot
sdtest
1
Hola! Permeteu -me que us pregunti, ja coneixeu la dinàmica en espiral?