Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Şirketlerin geçen ay personelle ilgili eylemleri (evet / hayır)

2) Şirketlerin geçen ay personel ile ilgili olarak eylemleri (gerçeği% olarak)

3) Korku

4) Ülkemin karşılaştığı en büyük sorunlar

5) Başarılı ekipler oluştururken iyi liderlerin kullandığı nitelikler ve yetenekler ne gibi?

6) Google. Takım etkinliğini etkileyen faktörler

7) İş arayanların ana öncelikleri

8) Bir patronu büyük bir lider yapan nedir?

9) İnsanları işte başarılı kılan nedir?

10) Uzaktan çalışmak için daha az ücret almaya hazır mısınız?

11) Yaşcılık var mı?

12) Kariyerde yaşlanma

13) Hayatta Yaşlılık

14) Yaşlılığın nedenleri

15) İnsanların Vazgeçme Nedenleri (Anna Vital)

16) GÜVEN (#WVS)

17) Oxford Mutluluk Araştırması

18) Psikolojik refah

19) Bir sonraki en heyecan verici fırsatınız nerede?

20) Zihinsel sağlığınıza bakmak için bu hafta ne yapacaksınız?

21) Geçmişim, şimdiki zamanımı veya geleceğimi düşünerek yaşıyorum

22) Meritokrasi

23) Yapay zeka ve medeniyetin sonu

24) İnsanlar neden erteliyor?

25) Kendine güven oluşturmada cinsiyet farkı (IFD Allensbach)

26) Xing.com Kültür Değerlendirmesi

27) Patrick Lencioni'nin "Bir Ekibin Beş İşlev Konstrüksiyonu"

28) Empati ...

29) Bir iş teklifi seçme konusunda BT uzmanları için gerekli olan nedir?

30) İnsanlar neden değişime direniyor (Siobhán McHale tarafından)

31) Duygularınızı nasıl düzenlersiniz? (Nawal Mustafa M.A. tarafından)

32) 21 Sonsuza Kadar Ödeme Becerileri (Jeremiah Teo / 赵汉昇 tarafından)

33) Gerçek özgürlük ...

34) Başkalarına Güven Yapmanın 12 Yolu (Justin Wright tarafından)

35) Yetenekli bir çalışanın özellikleri (Yetenek Yönetim Enstitüsü tarafından)

36) Ekibinizi motive etmek için 10 anahtar


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Korku

ülke
Dil
-
Mail
Yeniden hesaplamak
Korelasyon katsayısının kritik değeri
Normal Dağıtım, William Sealy Gosset (Öğrenci) r = 0.0353
Normal Dağıtım, William Sealy Gosset (Öğrenci) r = 0.0353
Spearman tarafından normal olmayan dağılım r = 0.0014
DağıtımNormal
olmayan
NormalNormal
olmayan
NormalNormalNormalNormalNormal
Tüm Sorular
Tüm Sorular
En büyük korkum
En büyük korkum
Answer 1-
Zayıf pozitif
0.0297
Zayıf pozitif
0.0298
Zayıf negatif
-0.0106
Zayıf pozitif
0.0970
Zayıf pozitif
0.0325
Zayıf negatif
-0.0019
Zayıf negatif
-0.1558
Answer 2-
Zayıf pozitif
0.0188
Zayıf pozitif
0.0076
Zayıf negatif
-0.0360
Zayıf pozitif
0.0711
Zayıf pozitif
0.0387
Zayıf pozitif
0.0082
Zayıf negatif
-0.1011
Answer 3-
Zayıf pozitif
0.0026
Zayıf negatif
-0.0170
Zayıf negatif
-0.0443
Zayıf negatif
-0.0458
Zayıf pozitif
0.0547
Zayıf pozitif
0.0808
Zayıf negatif
-0.0270
Answer 4-
Zayıf pozitif
0.0332
Zayıf pozitif
0.0285
Zayıf negatif
-0.0006
Zayıf pozitif
0.0155
Zayıf pozitif
0.0276
Zayıf pozitif
0.0105
Zayıf negatif
-0.0917
Answer 5-
Zayıf pozitif
0.0122
Zayıf pozitif
0.1193
Zayıf pozitif
0.0095
Zayıf pozitif
0.0721
Zayıf pozitif
0.0057
Zayıf negatif
-0.0083
Zayıf negatif
-0.1687
Answer 6-
Zayıf pozitif
0.0044
Zayıf pozitif
0.0005
Zayıf negatif
-0.0582
Zayıf negatif
-0.0004
Zayıf pozitif
0.0210
Zayıf pozitif
0.0830
Zayıf negatif
-0.0418
Answer 7-
Zayıf pozitif
0.0242
Zayıf pozitif
0.0368
Zayıf negatif
-0.0521
Zayıf negatif
-0.0234
Zayıf pozitif
0.0403
Zayıf pozitif
0.0568
Zayıf negatif
-0.0597
Answer 8-
Zayıf pozitif
0.0707
Zayıf pozitif
0.0781
Zayıf negatif
-0.0244
Zayıf pozitif
0.0140
Zayıf pozitif
0.0303
Zayıf pozitif
0.0137
Zayıf negatif
-0.1334
Answer 9-
Zayıf pozitif
0.0564
Zayıf pozitif
0.1531
Zayıf pozitif
0.0127
Zayıf pozitif
0.0769
Zayıf negatif
-0.0136
Zayıf negatif
-0.0495
Zayıf negatif
-0.1752
Answer 10-
Zayıf pozitif
0.0711
Zayıf pozitif
0.0700
Zayıf negatif
-0.0127
Zayıf pozitif
0.0246
Zayıf pozitif
0.0363
Zayıf negatif
-0.0156
Zayıf negatif
-0.1273
Answer 11-
Zayıf pozitif
0.0542
Zayıf pozitif
0.0488
Zayıf pozitif
0.0086
Zayıf pozitif
0.0078
Zayıf pozitif
0.0162
Zayıf pozitif
0.0315
Zayıf negatif
-0.1248
Answer 12-
Zayıf pozitif
0.0281
Zayıf pozitif
0.0929
Zayıf negatif
-0.0325
Zayıf pozitif
0.0361
Zayıf pozitif
0.0276
Zayıf pozitif
0.0365
Zayıf negatif
-0.1482
Answer 13-
Zayıf pozitif
0.0643
Zayıf pozitif
0.0916
Zayıf negatif
-0.0418
Zayıf pozitif
0.0237
Zayıf pozitif
0.0425
Zayıf pozitif
0.0239
Zayıf negatif
-0.1558
Answer 14-
Zayıf pozitif
0.0697
Zayıf pozitif
0.1017
Zayıf pozitif
0.0149
Zayıf negatif
-0.0062
Zayıf negatif
-0.0087
Zayıf negatif
-0.0002
Zayıf negatif
-0.1161
Answer 15-
Zayıf pozitif
0.0603
Zayıf pozitif
0.1299
Zayıf negatif
-0.0379
Zayıf pozitif
0.0163
Zayıf negatif
-0.0091
Zayıf pozitif
0.0164
Zayıf negatif
-0.1204
Answer 16-
Zayıf pozitif
0.0691
Zayıf pozitif
0.0221
Zayıf negatif
-0.0305
Zayıf negatif
-0.0515
Zayıf pozitif
0.0750
Zayıf pozitif
0.0187
Zayıf negatif
-0.0696


MS Excel'e
Bu işlevsellik kendi VUCA anketlerinizde bulunacaktır.
Tamam

You can not only just create your poll in the Tarife «V.U.C.A anket tasarımcı» (with a unique link and your logo) but also you can earn money by selling its results in the Tarife «Anket dükkanı», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarife «Benim SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Ürün Sahibi SaaS Pet Projesi SDTEST®

Valerii, 1993 yılında sosyal pedagog-psikolog olarak nitelendirildi ve o zamandan beri proje yönetiminde bilgisini uyguladı.
Valerii, 2013 yılında bir yüksek lisans derecesi ve Proje ve Program Yöneticisi kalifikasyonu aldı. Yüksek lisans programı sırasında proje yol haritası (GPM Deutsche Geselschaft Für Projektmanagement E. V.) ve spiral dinamiklere aşina oldu.
Valerii çeşitli spiral dinamik testleri aldı ve bilgi ve deneyimini SDTest'in mevcut versiyonunu uyarlamak için kullandı.
Valerii, V.U.C.A.'nın belirsizliğini araştırmanın yazarıdır. Psikolojide spiral dinamikler ve matematiksel istatistikler kullanan kavram, 20'den fazla uluslararası anket.
Bu gönderi var 0 Yorumlar
Cevap vermek
Bir yanıtı iptal et
Yorumunuzu bırakın
×
Bir hatayla
SİZİN DOĞRU versiyonunu önermekten
İstenen olarak e-posta girin
Gönder
İptal etmek
Bot
sdtest
1
Merhaba! Sana sormama izin verin, spiral dinamikleri zaten biliyor musunuz?