Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) گذريل مهيني ۾ اهلڪارن جي حوالي سان ڪمپنين جا عمل (ها / نه)

2) گذريل مهيني ۾ اهلڪارن جي حوالي سان ڪمپنين جا ڪارناما (حقيقت٪ ۾)

3) خوفناڪ

4) منهنجي ملڪ کي منهن ڏيڻ وارا وڏا مسئلا

5) ڪامياب ٽيمون تعمير ڪرڻ وقت ڪهڙيون خوبيون ۽ صلاحيتون ۽ صلاحيتون استعمال ڪنديون آهن؟

6) گوگل. عنصر جيڪي ٽيم جي اثر تي اثر انداز ٿين ٿا

7) نوڪري ڳوليندڙن جا بنيادي ترجيحات

8) باس کي هڪ عظيم اڳواڻ ڇا ٺاهيندو آهي؟

9) ماڻهن کي ڪم تي ڪامياب ڇا بڻائي ٿو؟

10) ڇا توهان دور دراز ڪم ڪرڻ لاء گهٽ ادائيگي حاصل ڪرڻ لاء تيار آهيو؟

11) ڇا ايجنسزم موجود آهي؟

12) ڪيريئر ۾ ايجنٽ

13) عمر ۾ عمر

14) عمر جو سبب

15) ماڻهن کي ڇو ڇڏي ڏيو (انا جي اهم)

16) ڀروسو (#WVS)

17) آڪسفورڊ خوشي سروي

18) نفسياتي خوشحالي

19) توهان جو ايندڙ دلچسپ موقعو ڪٿي هوندو؟

20) توهان پنهنجي ذهني صحت جو خيال رکڻ لاء هن هفتي ڇا ڪندا؟

21) مان پنهنجي ماضي، موجوده يا مستقبل بابت سوچيندي رهندو آهيان

22) ميريڪريسي

23) مصنوعي ذهانت ۽ تهذيب جو خاتمو

24) ماڻهو ڇو طنز ڪندا آهن؟

25) خود اعتمادي جي تعمير ۾ صنف جو فرق (IFD يڪينبچ)

26) Xing.com ثقافت جو جائزو

27) پيٽرڪ لينسڪيسي جو "هڪ ٽيم جي پنج ڊفيڪشن"

28) ايمانداري آهي ...

29) نوڪري جي آڇ چونڊڻ ۾ ان لاء ڇا ضروري آهي؟

30) ماڻهو ڇو تبديلي جي مزاحمت ڪن ٿا (سيوبي مچلي ذريعي)

31) توهان پنهنجي جذبات کي ڪيئن منظم ڪيو؟ (نالالما ايم اي ايف اي ايم پاران)

32) 21 صلاحيتون جيڪي توهان کي هميشه لاء ادا ڪنديون آهن (جريميا ٽيو / 赵汉昇 طرفان)

33) حقيقي آزادي آهي ...

34) ٻين سان اعتماد پيدا ڪرڻ جا 12 طريقا (جسٽن رائيٽ ذريعي)

35) هڪ باصلاحيت ملازم جي خاصيتون (ٽيلنٽ مينيجمينٽ انسٽيٽيوٽ طرفان)

36) توهان جي ٽيم کي متحرڪ ڪرڻ لاء 10 ڪيچ


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

خوفناڪ

ملڪ
ٻولي
-
Mail
ٻيهر ترتيب ڏيو
رابطي واري گنجائش جي نازڪ قدر
عام تقسيم، وليم سامونڊي گيسس (شاگرد) طرفان r = 0.0353
عام تقسيم، وليم سامونڊي گيسس (شاگرد) طرفان r = 0.0353
غير معمولي تقسيم، سپيرمن طرفان r = 0.0014
تقسيمغير
عام نمبر
جنرل-- عامغير
عام نمبر
جنرل-- عامجنرل-- عامجنرل-- عامجنرل-- عامجنرل-- عام
سڀ سوال
سڀ سوال
منهنجو سڀ کان وڏو خوف آهي
منهنجو سڀ کان وڏو خوف آهي
Answer 1-
ڪمزور مثبت
0.0297
ڪمزور مثبت
0.0298
ڪمزور منفي
-0.0106
ڪمزور مثبت
0.0970
ڪمزور مثبت
0.0325
ڪمزور منفي
-0.0019
ڪمزور منفي
-0.1558
Answer 2-
ڪمزور مثبت
0.0188
ڪمزور مثبت
0.0076
ڪمزور منفي
-0.0360
ڪمزور مثبت
0.0711
ڪمزور مثبت
0.0387
ڪمزور مثبت
0.0082
ڪمزور منفي
-0.1011
Answer 3-
ڪمزور مثبت
0.0026
ڪمزور منفي
-0.0170
ڪمزور منفي
-0.0443
ڪمزور منفي
-0.0458
ڪمزور مثبت
0.0547
ڪمزور مثبت
0.0808
ڪمزور منفي
-0.0270
Answer 4-
ڪمزور مثبت
0.0332
ڪمزور مثبت
0.0285
ڪمزور منفي
-0.0006
ڪمزور مثبت
0.0155
ڪمزور مثبت
0.0276
ڪمزور مثبت
0.0105
ڪمزور منفي
-0.0917
Answer 5-
ڪمزور مثبت
0.0122
ڪمزور مثبت
0.1193
ڪمزور مثبت
0.0095
ڪمزور مثبت
0.0721
ڪمزور مثبت
0.0057
ڪمزور منفي
-0.0083
ڪمزور منفي
-0.1687
Answer 6-
ڪمزور مثبت
0.0044
ڪمزور مثبت
0.0005
ڪمزور منفي
-0.0582
ڪمزور منفي
-0.0004
ڪمزور مثبت
0.0210
ڪمزور مثبت
0.0830
ڪمزور منفي
-0.0418
Answer 7-
ڪمزور مثبت
0.0242
ڪمزور مثبت
0.0368
ڪمزور منفي
-0.0521
ڪمزور منفي
-0.0234
ڪمزور مثبت
0.0403
ڪمزور مثبت
0.0568
ڪمزور منفي
-0.0597
Answer 8-
ڪمزور مثبت
0.0707
ڪمزور مثبت
0.0781
ڪمزور منفي
-0.0244
ڪمزور مثبت
0.0140
ڪمزور مثبت
0.0303
ڪمزور مثبت
0.0137
ڪمزور منفي
-0.1334
Answer 9-
ڪمزور مثبت
0.0564
ڪمزور مثبت
0.1531
ڪمزور مثبت
0.0127
ڪمزور مثبت
0.0769
ڪمزور منفي
-0.0136
ڪمزور منفي
-0.0495
ڪمزور منفي
-0.1752
Answer 10-
ڪمزور مثبت
0.0711
ڪمزور مثبت
0.0700
ڪمزور منفي
-0.0127
ڪمزور مثبت
0.0246
ڪمزور مثبت
0.0363
ڪمزور منفي
-0.0156
ڪمزور منفي
-0.1273
Answer 11-
ڪمزور مثبت
0.0542
ڪمزور مثبت
0.0488
ڪمزور مثبت
0.0086
ڪمزور مثبت
0.0078
ڪمزور مثبت
0.0162
ڪمزور مثبت
0.0315
ڪمزور منفي
-0.1248
Answer 12-
ڪمزور مثبت
0.0281
ڪمزور مثبت
0.0929
ڪمزور منفي
-0.0325
ڪمزور مثبت
0.0361
ڪمزور مثبت
0.0276
ڪمزور مثبت
0.0365
ڪمزور منفي
-0.1482
Answer 13-
ڪمزور مثبت
0.0643
ڪمزور مثبت
0.0916
ڪمزور منفي
-0.0418
ڪمزور مثبت
0.0237
ڪمزور مثبت
0.0425
ڪمزور مثبت
0.0239
ڪمزور منفي
-0.1558
Answer 14-
ڪمزور مثبت
0.0697
ڪمزور مثبت
0.1017
ڪمزور مثبت
0.0149
ڪمزور منفي
-0.0062
ڪمزور منفي
-0.0087
ڪمزور منفي
-0.0002
ڪمزور منفي
-0.1161
Answer 15-
ڪمزور مثبت
0.0603
ڪمزور مثبت
0.1299
ڪمزور منفي
-0.0379
ڪمزور مثبت
0.0163
ڪمزور منفي
-0.0091
ڪمزور مثبت
0.0164
ڪمزور منفي
-0.1204
Answer 16-
ڪمزور مثبت
0.0691
ڪمزور مثبت
0.0221
ڪمزور منفي
-0.0305
ڪمزور منفي
-0.0515
ڪمزور مثبت
0.0750
ڪمزور مثبت
0.0187
ڪمزور منفي
-0.0696


ذيشان فضيلت ڏانھن موڪليو
هي ڪارڪردگي توهان جي پنهنجي VUCA چونڊن ۾ دستياب هوندي
ٺيڪ آ ٺيڪ ن

You can not only just create your poll in the گالا «V.U.C.A ڪ ڪاريگر» (with a unique link and your logo) but also you can earn money by selling its results in the گالا «جو هلنگ جو دڪان», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing گالا «منهنجي SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
ويلري ڪوکوڪو
مصنوعات جي مالڪ ساس پالتو پروجيڪٽ SDSTST®

وليري 1993 ۾ سماجي پيڊ اوگولوججسٽ- نفسيات جي ماهر طور قابليت ڪئي ۽ منصوبي جي انتظام ۾ پنهنجو علم لاڳو ڪيو ويو آهي.
وليري ماسٽر جي ڊگري حاصل ڪئي ۽ پروجيڪٽ ۽ پروگرام جو مئنيجر ايسٽمينٽ قابليت حاصل ڪئي. هن جي ماسٽر جي پروگرام دوران، هو پروفيسرز گيٽس جيوٽس اسٽرلينٽ فئڪٽڪز سان واقف ٿي ويو.
وليري مختلف سرپل ڊائنامڪس ٽيسٽ ورتو ۽ SDST جو موجوده نسخو کي ترتيب ڏيڻ لاء هن جو علم ۽ تجربو استعمال ڪيو.
وليري V.u.ca.a جي غير يقيني صورتحال کي ڳولڻ جو مصنف آهي. نفسيات ۾ 20 انٽرنيشنل پولز ۾ سرپل ڊائنميٽڪ شماريات استعمال ڪندي تصور، 20 بين الاقوامي پولز کان وڌيڪ.
هن پوسٽ کي آهي 0 سممريون
جواب ڏيو
جواب رد ڪريو
پنهنجو تبصرو ڇڏي ڏيو
×
توهان غلطي مان ڳولا ڪريو
توهان صحيح نسخو PROPOSE
جيئن گهربل پنهنجي اي-ميل داخل ڪريو
موڪليو
رد
Bot
sdtest
1
هيلو، تون آهين! مون کي توهان کان پڇڻ ڏيو، ڇا توهان اڳ ۾ ئي سرپل ڊائنامڪس کان واقف آهيو؟